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Abstract

In this work, we develop a solution for the task of transaction categorization, specifically with the
dataset provided by the 2022 Wells Fargo Campus Analytics Challenge. Overall, we achieve a few
noteworthy contributions, including the engineering of two attributes responsible for improvement
in ML performance, development of a word clustering algorithm that helps the practitioner bet-
ter understand the relationships between words across categories, and design of a high-performing
classifier using deep transfer learning and state-of-the-art optimization techniques. The link to the
GitHub repository is: https://github.com/kotstot6/WellsFargoChallenge

1 Introduction

In today’s world of online shopping, it has become especially convenient for modern consumers to
not only browse records of their past transactions, but also gain insight into the breakdown of their
purchasing habits. In this direction, banking companies like Wells Fargo have fostered advancements
in the broadening of their application’s functionality, including the development of a transaction
categorization pipeline to process transaction data in a way that concisely and intuitively represents
the purchasing breakdown of account holders. If this banking feature proves to be scalable, then
users are immediately granted a powerful built-in budgeting tool. However, the scaling strategy at
hand is nontrivial and rather challenging for practitioners to solve.

For the longest time, companies were restricted to the large-scale human labeling of transaction
data, which may lead to accurate and reliable categorization, but fails to be done in a quick and
efficient manner. Recently, companies have leveraged their massive accumulations of labeled trans-
action data by training machine learning (ML) models to replicate the task demonstrated by the
pairs of data. In doing so, these companies have successfully deployed transaction classifiers that
instantaneously do the job that humans once had to perform on their own. On this topic, Wells
Fargo, through their 2022 Campus Analytics Challenge, seeks to make progress in the direction of
automated, human-like transaction categorization. In their challenge, Wells Fargo provides a dataset
of 40,000 labeled transaction examples, prompting students to develop predictive models that ef-
fectively classify 10,000 unlabeled examples into 10 purchasing categories– communication services,
education, entertainment, finance, health and community services, property and business services,
retail trade, services to transport, trade, professional, and personal services, and travel.

In this paper, I discuss the implementation, evaluation, and practical use of my own solution
to the challenge. First, we begin exploring the training dataset and make important decisions on
attribute selection and transformation. Next, we discuss and outline two engineered features that
enhance the predictability of the existing features, specifically demonstrating this “enhancement”
through comprehensive experiments on 6 baseline ML algorithms. Then, we pivot to the field of
deep transfer learning, where we investigate and fine-tune two of Google’s pre-trained transformers,
BERT [2] and XLNet [9], achieving a notable improvement in performance compared to the best
aforementioned ML algorithms. Lastly, I give a thorough discussion on the performance metric
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limitations, and provide insight into how these metrics should be interpreted. Overall, I conclude
that my best-performing BERT classifier appears to give more accurate categorizations than even
the (synthetic) train set provided by Wells Fargo, which highlights the pressing need for models to
be robust in the face of label noise at training time. The following subsection provides the analytic
process flow diagram in Figure 1, which illustrates the rest of the paper to come.

1.1 Analytic Process Flow Diagram

Figure 1: Illustration of the analytic process flow diagram, beginning with attribute selection and
ending with model comparison and data visualization.
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2 Exploratory Data Analysis

Towards the direction of building an automated transaction classifier, we begin with the traditional
and fundamental step of exploratory data analysis to better understand the structure of our dataset.
As mentioned earlier, the train set consists of 40,000 rows (examples) of transaction data, all of which
are labeled a category (class). On the other hand, the test set consists of 10,000 unlabeled examples.
First, we make note of the class distribution provided in Figure 2 below.

Figure 2: Distribution of transaction categories in the train set.

Here, we clearly see that two categories dominate the train set: entertainment and retail trade.
The former category makes up over 25% of all train examples, while the latter makes up over 30%.
Furthermore, some categories such as communication services and finance are very sparsely repre-
sented in the train set, which may make it harder for ML models to learn inner-class representations
during training. Having acknowledged a strong degree of class imbalance, it is important for us
to ensure that our future models are not greedily returning the majority classes for every guess,
regardless of the input semantics. Therefore, along with validation accuracy (the standard metric
for classification) we will also consider the macro F1 score when evaluating the performance of a
classifier. The macro F1 score combines precision and recall, two metrics that are minimized when
the false predictions are distributed evenly across the label space.

Moving to the attributes, we count a total of 14. Some consist of strings that identify and de-
scribe the transactions, some are flags that indicate the means of payment (e.g., debit card, credit
card), and others add more details about the transaction (e.g., amount paid, merchant code). We
observe that the trans desc attribute is parsed and processed to form more structured attributes,
like default brand and default location. Furthermore, the default brand is sanitized to produce the
qrated brand and coalesced brand attributes, which both exist to describe the entity collecting the
payment. Therefore, we can disregard all aforementioned attributes except for default brand, de-
fault location, and coalesced brand, which will all prove to be very useful in feature engineering.
Additionally, we throw away 4 more attributes that exhibit very little diversity in values, which
is clearly shown in Figure 10 of the Appendix. This leaves us with two attributes, amt and mer-
chant cat code, to discuss in the upcoming subsections.

2.1 Attribute 1: Amount (amt)

The first attribute in consideration is a numerical value representing the amount of money ($) spent
in the transaction. In the train set, this value can be as little as 0.01, and as high as ∼20,000; in
fact, the distribution is so heavily skewed right that it’s rather difficult to visualize. Although the
dollar unit is easy for us humans to understand, having this degree of asymmetry in the distribution
makes it harder for models (especially deep learning models) to interpret. Thus, we apply the log
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transformation to the attribute, and observe that the distribution is now symmetric as desired.
Furthermore, we’d like the distribution to be zero-centered (speeds up convergence in deep learning)
so we normalize the log-transformed attribute by applying standardization, which yields the following
composition:

log-norm-amt =
log(amt)−mean(log(amt))

std(log(amt))
. (1)

As a result, we transform the amt attribute into log-norm-amt, which is now zero-centered and
symmetrically distributed. The transformations for both train and test sets are shown in Figure
3 below. From this, we see that the distributions are practically identical, which gives us more
comfort in assuming that the train and test examples are identically distributed. In Figure 11 of the
Appendix, we box-plot the log-norm-amount distributions conditioned on each transaction category
in the train set. Some diversity is observed, but not too much; nevertheless, we keep the attribute
in consideration moving forward.

Figure 3: Transforming the amount (amt) attribute by applying log(·) and standardization.

2.2 Attribute 2: Merchant Code (merchant cat code)

The second attribute is an ordinal value taking form of a code provided by the merchant to help
clarify the type of purchase being made; specifically, the merchant code follows the assignment given
by ISO-18245. Each code is 4 digits, and the code space is arranged in such a way that neighboring
codes tend to reflect similar categories. For example, the range 4000-4799 is related to transportation
and 7530-7799 is related to repair services 1. To illustrate the organization of the code space, we
segmented the space into 10 bins (plus 1 “missing value” bin) and plot the transaction category
distribution conditioned on each bin in Figure 4 below.

Figure 4: Transaction category distribution organized by merchant code ranges.

1More range descriptions can be found at https://classification.codes/classifications/industry/mcc/
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Looking at this chart, we observe that the transaction category distribution varies across the
merchant code ranges. For example, the code ranges [0, 1000) and [8000, 9000) contain a majority
of transactions related to health and community services, while the range [6000, 7000) contains a
relatively high proportion of finance. More can be said on this visualization, but the general pattern
will be dissected in more detail in the following section on feature engineering. Lastly, in Figure 12
of the Appendix, we confirmed that the train and test sets reflect similar distributions across the
merchant code range space, which highlights the general similarity between the two sets.

Lastly, each figure found in this section (as well as the Appendix) was created in Python, primarily
with the matplotlib and seaborn libraries. The code for each figure can be found in the Jupyter
notebook file report figures.ipynb.

3 Feature Engineering

Through exploration of the data, we identified several important attributes– namely, the log-norm
amount, merchant category code, brand names, and location. As outlined in the previous section,
the log-norm amount is a descendant of the original amt attribute, and we are content with its
current role in the dataset. However, our analysis on the merchant category code revealed a po-
tential pattern that we should look to exploit; this will be detailed further in the next subsection.
Moreover, we kept the brand names and locations, but the semantics in these text strings are often
not enough to confidently categorize the transaction; in the second subsection, we walk through a
web-scraping technique that leverages the brand names and location to extract more information
about the transaction. As a result, we will add two engineered attributes to our dataset, and both
of which will improve the predictability of our train and test features.

3.1 Engineered Attribute 1: Merchant Category

The first engineered attribute is simply a quantitative description of the merchant code. Luckily,
the conversion from merchant code to merchant category is easily implemented with access to ex-
isting definitions (see data/merchant dictionary.csv). The reason we add a text description of
the merchant category is simple: the assumption that neighboring merchant codes possess similar
merchant categories is weak and implicit, while the similarity between merchant categories can be
explicitly measured. For example, Table 1 includes 3 transactions found in the train set, showing
their merchant codes, merchant categories, and transaction categories.

Train index Merchant code Merchant category Transaction category

12947 5541 gas/service stations with/without ancillary services Services to Transport

12886 5533 automotive parts accessories stores Retail Trade

15907 7538 automotive service shops (non-dealer) Services to Transport

Table 1: Three examples of transaction data highlighting a notable difference between merchant
code similarity and merchant category similarity.

Here, the first two examples have much closer merchant codes (5541 vs. 5533), but the transaction
categories are different. The first example’s merchant code may be closer to the second example’s
code, but its merchant category is more similar to that of the third example, as they both contain
the word “service”. Both examples reflect a “Services to Transport” transaction category, which
may indicate that the word “service” in an automotive context may be the deciding factor between
the classification of “Services to Transport” versus “Retail Trade”. More examples like this exist,
but the point is simply that the addition of a merchant category text description gives us more
information to use in the development of our classifier.
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3.2 Engineered Attribute 2: Description

The second engineered attribute takes form of a simple text description of the brand names and
location, which requires a much more involved collection process. The motivation is straightforward:
some brand names like “teriyaki grill” clearly convey the type of expenditure (entertainment), while
others like “yoli” and “mlm” do not. Indeed, the addition of a merchant category should go a long
way in correctly classifying these transactions, but almost 40% of the data fail to possess a merchant
code. The question is: if the code is missing, and the brand name is vague or not category-specific,
then how should we go about categorizing the transaction? Often times, this shows to be a major
limitation of the raw dataset, especially when the brand name is unforeseen. To address this issue,
we turn to web-scraping for more information by using the given brand names and location.

Figure 5: Transaction category distribution organized by merchant code ranges.

Querying Google search is a fair idea, but the amount of unstructured data is rather overwhelming
when all we typically need is a short description of the brand. Luckily, in many cases, Google provides
such a description in its knowledge graph– a panel that is reserved for the most important information
related to the query. For example, in Figure 5, the brand “oswalds” with location “anaheim ca”
is combined to form a simple query, and the search results are conveniently supplemented with a
knowledge graph including the simple description we want– a gift shop. This information helps
us (or the classifier) understand that “oswalds” is a gift shop and therefore should be classified
as retail trade. Since the source code structure is identical for each returned Google search, it is
easy for us to pinpoint where to find the text description. Without going into too many details
(see make google search.py in the feature engineering directory), we are able to supplement
each transaction example in the train and test sets with a short description (when Google provides
it) by simply querying the brand names and location. We use the grequests library for making
asynchronous HTTP requests, requests-ip-rotator and Amazon Web Services (AWS) for rotating
through IP addresses (required for quick web-scraping), and BeautifulSoup (bs4) for parsing HTML
data. Table 2 gives three more examples of our results along with their transaction categories.

4 Word Clustering

In the previous sections, we have identified and engineered a total of 5 features: log-norm amount,
merchant code, merchant category, brand names, and description (discarding location after the fea-
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Train index Brand name Description Transaction category

120 ironside bar Entertainment

11034 simply mac electronics store in peachtree corners, georgia Retail Trade

32471 kosama fitness center in clive, iowa
Health and

Community Services

Table 2: Three examples of transaction data, including the brand name, description via web-scraping
Google’s knowledge graph, and transaction category.

ture engineering step). To recap, log-norm amount and merchant code are numeric, and the rest are
currently unstructured text. In order to feed qualitative attributes to a model, we must strategically
encode this data into feature vectors; the process of doing so is called a bag of words (BoW) model,
a very common term in the world of natural language processing. In this section, we outline the way
in which we convert text to number-filled vectors for both (1) visualization purposes, and (2) our
machine learning baseline experiment. After we finish discussing our feature encoding scheme, we
will move to visualization techniques that help uncover more information about the task at hand.

4.1 Feature Encoding Pipeline

The goal of this step is to process strings of unstructured text and transform them into interpretable
numerical vectors that possess reasonable dimensionality and preserve the meaningful semantics of
the original text. Before applying any kind of vectorization, we clean the unstructured text by
lowercasing the whole string, removing punctuation, and using nltk’s tokenization function to split
the text into words. Then, we apply the Porter stemming algorithm [7] to remove suffixes from
words, which helps reduce the size of the dictionary. Having done so, we vectorize our qualitative
data by introducing a m × n-sized matrix, with m being the number of examples in the dataset,
and n being the size of the dictionary (i.e., number of unique words in the dataset). In the matrix
(denoted as C), each entry Ci,j equals the number of times word j shows up in example i. This
vectorization is implemented with Scikit-Learn’s CountVectorizer class. Then, we transform the
matrix further by applying the widely-used term frequency - inverse document frequency (TF-IDF)
function with Scikit-Learn’s TfidfVectorizer class. Although we will skip the details of TF-IDF,
it is worth noting that the transformation is used as a way to normalize the measure of “word
importance” across all dataset examples of varying text length. For an illustration of this pipeline,
please refer to the analytic process flow diagram in Figure 1, and for more information on the code
implementation, please see cluster.py in the visuals directory.

Now that we have established the text-to-feature encoding pipeline, we will briefly discuss its use
on the three main text attributes. Either each attribute can undergo the vectorization separately
and be combined at the end, or be combined at the beginning (i.e., concatenating the text strings)
and undergo one vectorization. We will use the latter method for visualization purposes, but we
find that the former method performs better as input for machine learning.

4.2 Visualization of the Feature Space

For the purposes of this subsection, we will ignore the log-norm amount andmerchant code attributes
since we are strictly dealing with text attributes. Furthermore, we encode the three text attributes
by concatenation into one attribute, then transformation into 40,000 rows (one per train example)
of vectorized features. As an ML practitioner, it is always helpful to visualize the feature space, but
unfortunately the feature vectors possess a massive size of 36,121 (one column for each word in the
dictionary). Therefore, we must utilize a dimensionality reduction scheme that best preserves the
relationships between feature points in the high-dimensional space.

A recently-introduced technique receiving much attention is t-distributed stochastic neighbor em-
bedding (t-SNE) [8], which models each high-dimensional point in lower (2/3) dimensional space in
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such a way that synthesizes the similar groups of data and segregates the dissimilar ones. Since
the t-SNE algorithm is only recommended for feature spaces of dimension 50 or less, we first use
truncated singular value decomposition (T-SVD) to reduce the 40, 000×36, 121 sparse feature matrix
down to 40, 000× 50. Figure 6 illustrates the 2D representation of the feature space after applying
the t-SNE algorithm to the 40, 000×50 compressed feature matrix. Since this algorithm is unsuper-
vised (receives no labeling), it is exciting to see that the algorithm groups together examples that
are similarly categorized. If anything, this visualization reassures that our high-dimensional feature
representation contains enough information for our models to make intelligent classifications.

Figure 6: t-SNE clustering of the feature space introduced in subsection 4.1.

Indeed, the clustering of high-dimensional feature data is enlightening in itself, but can we
engineer a better visualization by leveraging the useful information we have on word frequencies?
What if instead of points, we use words to plot the t-SNE cluster, where each word is written in
place of points that contain it, colored according to the category of most relevance, and sized based
on its relative frequency within the category? With the data and resources we have, this is certainly
possible, so that’s why I went ahead and attempted to develop an algorithm that clusters words
according to both t-SNE and high-dimensional data. In the next few paragraphs, I will describe my
approach as well as my qualitative results.

The first step is to figure out which words in the dictionary belong to which category, and
rank them with a score that measures how important they are to the category. In doing so, we
use the 40, 000 × 36, 121 high-dimensional TF-IDF feature matrix, denoted T , to create a new
10×36, 121 matrix F where each Fi,j measures the importance of word j to the transaction category
i. Specifically, we derive F as follows:

Fi,j =

[
1

|Ki|
∑
k∈Ki

Tk,j

]
−

[
1

40, 000

40,000∑
k=1

Tk,j

]
, (2)

where Ki is the set of examples categorized as i. Then each word is assigned to the transaction
category (row) i∗ that gives the highest score, where i∗(j) = argmaxi∈[10]Fi,j . For reference, Table
5 in the Appendix lists the highest-scoring words for each transaction category. Once the words are
assigned to categories, the words are normalized between 0 and 1, where the highest-scoring word
for each category is 1. Then, the word scores are scaled by category frequency in the dataset. After
this step, we have our final scores for each word in the dictionary.
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The next step involves the placement of words in the t-SNE cluster. To do this, we build on
the wordcloud Python library, which randomly fits a group of words (sized by frequency) in a
given shape. In their algorithm, they size and position the words in order of frequency (highest →
lowest); we take the same approach, with our word scores (denoted sw for word w) acting as the
frequencies. However, the main difference is that the existing wordcloud algorithm finds all the open
placements, then draws the word in a randomly-chosen placement, while we use our own algorithm
to decide where the word should be placed, given the open placements. As a prerequisite to our word
clustering algorithm, we assign each word a center point; specifically the center point pw for word w
is the dimension-wise median of all the 2D points in the t-SNE cluster that (1) belong to the same
transaction category assigned to the word, and (2) contain the word in its text. We use median
as our measure of centrality because it is more robust to outliers compared to the mean. With
each word w possessing a score sw and central point pw, we can now introduce the word clustering
algorithm demonstrated in Algorithm 1. The global parameters fontmax, fontmin, α, ϵ1, and ϵ2
are used for improving the appearance of the word cluster, with an example displayed in Figure 7.

Figure 7: t-SNE word clustering of the feature space introduced in subsection 4.1. The parameters
fontmax = 30, fontmin = 4, α = 0.25, ϵ1 = 100, ϵ2 = 0.25 were used for this rendering.
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Algorithm 1 Positioning words on the “word cloud”

procedure WordCluster(w, pw, sw; fontmax, fontmin , α, ϵ1, ϵ2)
w.fontsize ← fontmax ×(sw)α ▷ smaller α makes sw less impactful
while w.fontsize ≥ fontmin do

possible ← open placements within ϵ1 distance of point pw
preferred ← places in possible also within ϵ1 · ϵ2 distance of pw
if preferred is nonempty then

return random place in preferred

else if possible is nonempty then
return place in possible closest to pw

end if
w.fontsize ← w.fontsize - 1

end while
return null ▷ no viable placement was found, so word w is not drawn

end procedure

Many more versions can be found in the wordcloud figures directory under visuals/data/. For
more information on the word scoring and clustering algorithms, please see word cluster data.py

and make word cluster.py under the visuals directory.
To me, the word cluster visualization is quite fascinating and there is a lot to discuss. Since

I’d like to keep this short, we will stick to a few main points. First, it is interesting to see how
similar words are grouped together within the larger cluster of their transaction category. For
example, in the big blue “Retail Trade” cluster, we observe a sub-cluster of liquor, wine, beer, and
package, which all share the theme of alcoholic beverages; the same theme can be seen in the orange
“Entertainment” cluster, where drinking, alcoholic, beverage, and nightclub are grouped together.
However, what is possibly even more interesting is the overlapping nature between some categories.
The red “Services to Transport” cluster is broken into two pieces, which is partially surrounded
by automotive-themed “Retail Trade” words, such as ford, lease, toyotum, used, autotruck, part,
and dealer. This particular overlap underscores the challenge of differentiating between car-related
places, like auto parts stores (retail trade) versus auto body shops (services to transport). Lastly,
it is also interesting to see how some blue retail words have migrated north, blending in with the
orange entertainment words. A deli, for example, could very easily be confused with a restaurant,
even though it is technically a store selling food. Similarly, bakery, cake, donut, and bagel are all
technically retail since they are pre-made goods, but they could easily pass as items found in the
entertainment category. Although more interesting observations could be made about the word
cluster, it is now time to begin discussing the predictive modeling stage of the project.

5 Machine Learning Baselines

Up to this point, we have reviewed the preluding components of the data science life cycle, including
attribute selection, feature engineering, and data exploration. In doing so, we witnessed the trans-
formation of three unstructured text attributes into one high-dimensional, sparse feature matrix. On
the way here, the intriguing technique of word clustering caught our attention, confirming that our
data has the potential to facilitate the learning of well-performing models. In this section, we begin
exploring the predictive modeling stage, which includes the architectural choices, hyperparameter
tuning, and evaluation of machine learning and/or deep learning models. Specifically, we begin with
the implementation of 6 total machine learning algorithms– three of which we consider basic, and the
other three we consider a strong representative subset of the current boosting algorithm literature.

For each ML algorithm, we use three different datasets. The first dataset only includes three
of the original attributes: the log-norm amount, merchant code, and text of brand names. The
log-norm amount is stored in one column, while the merchant code takes up two columns– one
with the original data (with the missing values imputed with zeros), and the other simply being a
missing value indicator column (1 - missing, 0 - filled). The text of brand names is encoded into

10



features of length 28,918, the size of the brand name dictionary. As a result, the total dataset can
be represented by a 40, 000× 28, 921 feature matrix. The second dataset is similarly structured, but
also includes the merchant category and description text attributes; these are concatenated with
the brand names before transforming into 36,121-length feature vectors. The final dataset contains
every aforementioned attribute, but keeps the feature encodings separate between the three text
attributes. Therefore, the final combined feature vector is the largest of the three, with length
43,079 (includes the 2 numerical attributes, and one dictionary for each text attribute).

ML Algorithm Amount + Code + Brand + Category + Description + Separate Bags of Words

Type Name Acc. F1 Acc. F1 Acc. F1

Basic

Naive Bayes 69.7 ± 0.6 53.7 ± 3.7 81.2 ± 0.6 62.9 ± 2.8 82.6 ± 0.7 67.6 ± 3.7

KNN 75.8 ± 2.3 65.6 ± 3.2 79.7 ± 1.4 69.8 ± 3.6 80.7 ± 1.7 70.0 ± 2.9

Random Forest 77.8 ± 1.4 60.8 ± 4.1 81.2 ± 0.9 68.7 ± 4.1 82.8 ± 0.4 72.2 ± 3.2

Boosting

XGBoost 78.1 ± 1.4 72.3 ± 1.7 82.9 ± 0.8 72.5 ± 3.3 83.0 ± 0.8 75.0 ± 2.6

LightGBM 78.8 ± 1.9 70.2 ± 3.1 83.6 ± 0.9 73.1 ± 1.6 83.5 ± 0.8 75.0 ± 3.1

CatBoost 74.1 ± 1.7 57.6 ± 1.8 81.5 ± 1.3 71.2 ± 2.3 82.4 ± 0.8 72.9 ± 2.1

Table 3: Results for the 6 ML algorithms. Each combination of algorithm and dataset was run on
seeds 1-5, and the mean ± std is reported. The top-performing results are boldfaced.

As mentioned before, we consider a total of 6 ML algorithms. The first algorithm is Multinomial
Naive Bayes, which is typically a popular choice for text classification tasks. However, the input
must be between 0 and 1, so the Naive Bayes algorithm only trains on the text attribute encodings
for each dataset. The second algorithm is K-Nearest Neighbors (KNN) which is typically used for
simpler tasks, but can serve to be a good baseline for more complex tasks. The last basic algorithm
is Random Forest, which builds an ensemble of decision trees and classifies via majority vote system;
this model has more capacity than the previous two, so we expect this one to perform the best out
of the basic algorithms. The next three in consideration are boosting algorithms, whose primary
objective is to convert a group of weak learners (e.g., decision trees) into strong learners by focusing
on their weaknesses– a seemingly-meta approach to machine learning. Specifically, we consider
XGBoost [1], LightGBM [4], and CatBoost [3], all of which have recently received high praise for
performing well in a variety of ML competitions. Since the performance of ML algorithms often
relies on careful choice of hyperparameters, we defined hyperparameter search spaces for each of
the 6 algorithms, which can be found in algo params.py under the machine learning directory.
Furthermore, we traverse the hyperparameter spaces with Bayesian optimization, implemented with
the hyperopt library. After a period of optimization, the best hyperparameters are saved for each
algorithm, and they are later used with the models to train on 5 random seeds of the experiment.

Overall, we make a few important observations. First, the addition of two engineered attributes–
merchant category and description– certainly helped the models improve their accuracy. In fact, each
ML algorithm improved by at least 3% accuracy, with Naive Bayes and CatBoost even improving
by 11.5% and 7.4%, respectively. This indicates to us that our feature engineering proved to be
worthwhile; the inclusion of merchant category and/or description enhanced the predictability of
the dataset to a noticeable extent. Second, it appears that keeping the three feature encodings
separate for each text attribute was the right decision in terms of model performance. With the
exception of LightGBM (barely), every other algorithm showed improvement with the separation
of feature encodings. This would actually make sense because the separation allows the model
to distinguish between each attribute, and possibly establish a “hierarchy of trust”; for instance,
perhaps the model will find that the merchant category text is more reliable than the description
text, or vice-versa. Without this separation, only one “bag” of words is created, and there is no
way to differentiate between the three attributes. Lastly, it is clear that XGBoost and LightGBM
are the two best-performing algorithms for this task, with LightGBM clearly being the top choice.
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The best LightGBM model achieved an accuracy of 83.6%, and another one achieved an F1 score
of 75.0%. In the limited world of ML algorithms, these are impressive scores, but we will soon see
that deep transformer models can easily surpass these baselines. For more information on the ML
baseline experiments, please see main.py under the machine learning directory.

6 Deep Transfer Learning

In the previous section, the hyperparameter tuning, training, and evaluation of 6 machine learning
algorithms on 3 datasets gave us key insight into the classification task at hand. Not only did
it confirm to us the important role merchant category and description play in the separability of
the dataset, but it also provided us a pair of baseline metrics to beat: 83.6% for accuracy, and
75.0% for F1 score. Indeed, these metrics are impressive considering the difficulty of the task and
relatively-large number of classes, but we still have one important solution to try: deep transfer
learning, a method responsible for achieving state-of-the-art results in just about every natural
language processing (NLP) task to exist. In general, transfer learning is the process of training
a model to perform a certain task, then applying the learned instance of the model to perform a
different task. Shifting focus from one task to another, the model is said to “transfer” its embedded
knowledge to the new task, helping the model adapt to its new environment rather quickly. In
this section, we consider the use of two transformer models, BERT [2] and XLNet [9], that were
pre-trained to perform simple NLP tasks, like predicting the next word in a sentence, or evaluating
the consistency of two sentences. Now applying the models to the new task of text classification, we,
the practitioners, are responsible for fine-tuning the models to fit on our own train set. However,
it is first important to understand the architecture of each transformer (similaries and differences)
before diving deeper into optimization strategy. On this topic, Figure 8 illustrates the setup of each
transformer as a text classifier, with BERT on the left and XLNet on the right.

Figure 8: Architectures of each transformer in consideration. Both receive the input similarly, but
differ in the fully-connected classification layer.

First, each transformer comes with its own tokenizer– a function that converts a string of un-
structured text into machine-friendly data. We call these tokens 1...N , and they are fed into the
network to produce N token encodings E1...EN . Since batches in pytorch must contain entries of
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the same length, we truncate or pad each input to 50 tokens for both models. After this step, the
inner-workings of BERT and XLNet are very structurally different and not the focus of this report;
in general, XLNet is a descendant of BERT, and we find that it takes longer to compute due to its
larger capacity. Both models return a set of vectorized outputs corresponding to the input length,
and from here, BERT and XLNet differ in how they form the first classification state from the output
vectors. In one case, BERT simply makes the head of the output layer (C) the first classification
state. Conversely, XLNet utilizes the entire set of output vectors by pooling the element-wise mean;
since each output vector has a length of 768, the pooled classification state is also of length 768.

Figure 9: Validation error at each checkpoint during BERT training for each measure of T0 (left)
and the realized learning rates during training for each T0 (right).

Next, the classification state undergoes a fully-connected layer to arrive at the final state of
10 units. Before doing so, we concatenate the log-norm amount attribute to the end of each first
classification state, yielding a new total length of 769 units. The final classification state represents
the estimated posterior distribution p̂Y |X=x conditioned on the input x. Therefore, each unit corre-
sponds to a transaction category; for simplicity, we organize the categories alphabetically, assigning
0 to communication services, 1 to education, and so on. When making predictions, we classify
by selecting the category with the highest valued unit. During training, we use dropout with 0.1
probability before the linear classification layer, and cross entropy loss to minimize the expected

Fixed lr T0 = 0.5

Transformer Acc. F1 Acc. F1

BERT 87.3 ± 1.2 78.8 ± 2.7 87.9 ± 0.6 79.0 ± 4.7

XLNet 86.4 ± 1.1 74.1 ± 2.9 86.8 ± 0.8 76.6 ± 3.2

T0 = 1 T0 = 2

Transformer Acc. F1 Acc. F1

BERT 87.7 ± 0.7 79.0 ± 3.8 87.6 ± 0.9 78.8 ± 5.0

XLNet 86.7 ± 1.1 76.3 ± 3.6 87.0 ± 1.3 77.0 ± 3.3

Table 4: Results for the two transformers for each interval of warm restart. Each combination of
transformer and T0 was run on seeds 1-3, and the mean ± std is reported. The top-performing
results are boldfaced
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KL Divergence between the ground-truth posterior distribution and estimated poster distribution.
For optimization, we use AdamW [6] with an initial learning rate of 2 × 10−5 and weight decay of
0.01. Additionally we use a cosine annealing learning rate scheduler with warm restarts [5], and
tune the parameter T0– the number of iterations before the next warm restart– to maximize the
validation accuracy of the models, as shown in Figure 9 for BERT (XLNet is shown by Figure 13 in
the Appendix) and Table 4. We train with 2 epochs, which is sufficient for convergence.

Analyzing the results, we see that the most frequent level of warm restarts (T0 = 0.5) achieves
the best accuracy and F1 score for BERT– 87.9% and 79.0%, respectively. However, the other
values of T0 are not too far behind, indicating that any degree of learning rate decay serves to
be useful in optimization. This is highlighted by the fact that a constant learning rate leads to a
noticeably smaller accuracy for both BERT and XLNet. On the other hand, XLNet’s accuracy and
F1 score is maximized with a cosine annealing decay and no warm restarts (T0 = 2). However,
like BERT, XLNet performs well across all tested variations of learning rate decay. Overall, we see
a significant improvement in both accuracy and F1 score in the transition from conventional ML
algorithms to deep transfer learning; building on this, we also observe a clear difference between
BERT and XLNet, where BERT’s best instance outperforms XLNet’s by 0.9% in accuracy and 2%
in F1 score. Therefore, we select BERT with T0 = 0.5 and the aforementioned train settings to
be our final classifier. For more information on the deep transfer learning experiments, please see
main.py and train.py under the deep learning directory, as well as the bert.py and xlnet.py

under the deep learning/transformer models/ directory

7 Conclusion

In this work, we develop a solution for the task of transaction categorization, specifically with the
dataset provided by the 2022 Wells Fargo Campus Analytics Challenge. Overall, we achieve a few
noteworthy contributions, including the engineering of two attributes responsible for improvement
in ML performance, development of a word clustering algorithm that helps the practitioner bet-
ter understand the relationships between words across categories, and design of a high-performing
classifier using deep transfer learning and state-of-the-art optimization techniques. The strengths
have been identified, but the limitations are just as important. For example, the final classifier file is
nearly half a gigabyte, and the training time is significantly higher that that for any of the tested ML
algorithms. Furthermore, 88% accuracy appears to be good given the challenging task at hand, but
it can always be improved. Unfortunately, the synthetic data contains a noticeable degree of label
noise (I estimate around 10%), so the evaluation metrics are not completely accurate. After labeling
200 random examples myself, I observed that my final classifier is about 95% consistent with my
answers, while the “ground truth” labeling is only around 90% consistent. Although I didn’t have
much time to explore this, a potential avenue would be to work on robustification techniques against
the threat of label noise. One popular technique is the use of robust loss functions that un-twist the
corrupted ground-truth posterior distribution.
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A Appendix

Figure 10: Distributions of four attributes that we chose to discard, reflecting very little diversity.

Figure 11: Distributions of the log-norm amount attribute conditioned across the category space.
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Figure 12: Nearly-identical distributions of merchant code range space for each train and test set.

Transaction Category Highest-scoring words

Communication Services service, fri, telecommuncation, serv, localong

Education school, university, college, educational, nec

Entertainment restaurant, place, eating, bar, cafe

Finance insurance, open, agency, financial, near

Health and Community Services medical, dentist, clinic, center, hospital

Property and Business Services merchant, continuitysubscription, business, none, google

Retail Trade store, liquor, grocery, market, convenience

Services to Transport auto, car, ga, station, repair

Trade, Professional and Personal Services salon, beauty, nail, barber, hair

Travel hotel, resort, motel, inn, lodging

Table 5: Highest-scoring words for each of the 10 transaction categories.
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Figure 13: Validation error at each checkpoint during XLNet training for each measure of T0 (left)
and the realized learning rates during training for each T0 (right).
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