
Kyle Otstot, Spring 2022

Honors Thesis/Creative Project
A Graph-Based Machine Learning Approach to Realistic

Traffic Volume Generation

Brief Introduction
Hello, I’m Kyle Otstot!

• Third year major in Computer Science &
Mathematics

• Incoming Master’s in Computer Science

• Research Assistant at ASU

• Robustifying ML models under real-world
dataset corruptions

Committee members:

• Dr. Gennaro De Luca – Director

• Dr. Yinong Chen – Second reader

CSE Capstone Project
Dynamic Shortest-Path Algorithm:

• Every hour, the algorithm predicts the shortest
path between any start / end points in a fixed road
network

• The algorithm needs the following:

• Structure (nodes / edges) of road network

• Hourly edge weights – expected travel time

• Road network & hourly data should be realistic

Honors Thesis/ Creative Project:

• An extension of the capstone project Start

End
12:00pm

2:00pm

5:00pm

Searching For Traffic Data
How is real-world traffic measured?

• Traffic volume: the number of passing cars per unit
of time (cars/hour)

• Traffic density: the number of cars in a specified
length of roadway (cars/mile)

•

• New York State Department of Transportation
(NYSDOT) reports hourly traffic volume [1]

• Traffic density is not recorded

• Set constant, focus on obtaining traffic volume

travel time (hour) =
density (cars/mile) × road length (miles)

volume (cars/hour)

Searching For a Road Network
Where can we find a real-world road network?

• OpenStreetMap (OSM) is a free geographic
database of the world [2]

• A GraphML file of Manhattan, New York City was
created from the OSM database [3]

• The Manhattan graph consists of the following:

• Nodes (Intersections)

• Node data (GPS coordinates, roads, etc.)

• Directed edges (Road segments)

• Edge data (road name, length, speed limit, etc.)

Problem Setup
Dataset Generation

& Preprocessing

Predictive Modeling Model Evaluation
& Discussion

Problem Setup

Contents
1. Insufficient Data
2. Machine Learning

Solution Proposal
3. Technologies Used

Insufficient Data
• In order to make predictions with a dynamic shortest-

path algorithm, we need hourly traffic volume for each
road segment (edge) in the network

• However, NYSDOT only receives hourly traffic volume
from a small subset of road segments

• Hourly traffic volume is collected by traffic stations

Traffic stations are red

Problem Setup

Contents
1. Insufficient Data
2. Machine Learning

Solution Proposal
3. Technologies Used

Learn , Predict

Machine Learning Solution?
Research Question:

• Can we develop a Machine Learning (ML) algorithm that
generalizes the NYSDOT data to all road segments in
Manhattan?

• Can a model make accurate predictions on unforeseen
road segments by learning the traffic patterns in ~300
recorded examples?

Main Tasks:

1. Generate & preprocess a supervised learning dataset

• Input – road segment attributes

• Output – hourly traffic volume

2. Evaluate the performance of ML algorithms on the dataset

Problem Setup

Contents
1. Insufficient Data
2. Machine Learning

Solution Proposal
3. Technologies Used

Technologies Used
Programming:

• Python & Jupyter Notebook

Python libraries:

• General use

✓ Numpy, Pandas

• Data visualization

✓ Matplotlib, Pandas

• Graph handling

✓ Networkx

• Machine Learning

✓ Scikit-Learn, Pytorch

[3]
Dataset Generation

& Preprocessing

Contents
1. Traffic Station

Overview
2. Station Road

Segment Mapping
3. Dataset Generation

Pipeline
4. OSM Feature Selection
5. Feature Engineering
6. Cross Validation

→

Traffic Station Overview
Traffic Station: a device that counts the
number of passing vehicles and reports
hourly traffic volume.

Station details:

• Each station belongs to one road segment

• Total of 310 stations in Manhattan

• A 24-hour volume breakdown for each
station is reported

12am 1am 2am … 9pm 10pm 11pm

656 352 252 … 1265 1068 878

= Station = Road segment

Traffic Station Overview
Main idea: create a function that receives any road
segment and predicts a 24-hour volume vector.

Procedure:

• Train a ML model on pairs of road segment
attributes (input) and 24-hour traffic volume
(“ground-truth” output)

• Test the model on pairs not used for training

Next steps:

• For each station, find the road segment that
contains it

• Pair the road segment attributes with the
corresponding station 24-hour volume

= Train input = Test input

[3]
Dataset Generation

& Preprocessing

Contents
1. Traffic Station

Overview
2. Station Road

Segment Mapping
3. Dataset Generation

Pipeline
4. OSM Feature Selection
5. Feature Engineering
6. Cross Validation

→

Station Database Breakdown

74th St.

Traffic station information taken from the NYSDOT public database.

Grand Ave.

Calamus Ave.

Station

Road Segment Data Breakdown
Road segment information taken from OpenStreetMap.

Feature Total # Data example

Node
(Intersection) 4426

Edge
(Road segment) 9609

Simple rendering of
map with Networkx

Mapping Stations to Road Segments
Attempt #1- by road names:

1. Input: Station ID (RCSTA + Direction)

2. From NYSDOT data, find

• Start intersection (“Roadway name”,
“Station start”)

• End intersection (“Roadway name”,
“Station end”)

3. Search OSM data for all the edges that
correspond to each road name. From here
you can derive the two intersection IDs

4. Find the particular edge that contains both
intersection IDs: this is your road segment

Road name match example:

Database Road name

NYDOT E 79TH ST

OSM East 79th Street

Token conversions:

• N,S,E,W North, South, East, West

• Uppercase Capitalize first letter only

• St, Ave, Rd Street, Avenue, Road

⇒

⇒

⇒

Mapping Stations to Road Segments
Attempt #1- by road names:

1. Input: Station ID (RCSTA + Direction)

2. From NYSDOT data, find

• Start intersection (“Roadway name”,
“Station start”)

• End intersection (“Roadway name”,
“Station end”)

3. Search OSM data for all the edges that
correspond to each road name. From here
you can derive the two intersection IDs

4. Find the particular edge that contains both
intersection IDs: this is your road segment

NYSDOT
road names

OSM
road names

1788 711105

Mapping Stations to Road Segments
Attempt #2- by latitude & longitude:

1. Input: Station ID (RCSTA + Direction)

2. From NYSDOT data, find latitude & longitude

3. Determine the similarly-directed road segment with
the following formula:

where…

edge* = min
E∈edges

d(E) := ys − (m(E)(xs − x(E)
1) + y(E)

1)

 long, lat of edge ’s start intersection

 long, lat of edge ’s end intersection

(x(E)
1 , y(E)

1) : E

(x(E)
2 , y(E)

2) : E

, random noise

 long, lat of station

m(E) =
y(E)

2 − y(E)
1

x(E)
2 − x(E)

1 + ϵ
ϵ :

(xs, ys) :

d(E1)

d(E2)

E1

E2

 is chosen since

E1
d(E1) < d(E2)

Mapping Stations to Road Segments
Rendering of map with
Networkx: stations are
red and chosen road
segments are cyan

Attempt #2- by latitude & longitude:

1. Input: Station ID (RCSTA + Direction)

2. From NYSDOT data, find latitude & longitude

3. Determine the similarly-directed road segment with
the following formula:

Final Results:

• Appears to be an accurate approximation of the true
station road segment mapping

edge* = min
E∈edges

d(E) := ys − (m(E)(xs − x(E)
1) + y(E)

1)

→

[3]
Dataset Generation

& Preprocessing

Contents
1. Traffic Station

Overview
2. Station Road

Segment Mapping
3. Dataset Generation

Pipeline
4. OSM Feature Selection
5. Feature Engineering
6. Cross Validation

→

Dataset Generation Pipeline

Pool of examples
Road segment Station

Attributes 24-hour volume

)(,
Given the attributes, how well can we predict the 24-hour volume?

Dataset Generation Pipeline

Station #1 →

Features Targets

Station #2 →

Station #310 →

⋮

Vector of encoded attributes
from OSM

 Station #2←

 Station #310←

⋮

 Station #1←

24-hour volume vector
from NYSDOT

[3]
Dataset Generation

& Preprocessing

Contents
1. Traffic Station

Overview
2. Station Road

Segment Mapping
3. Dataset Generation

Pipeline
4. OSM Feature Selection
5. Feature Engineering
6. Cross Validation

→

Identifying Relevant Attributes From OSM
OSM data of road segment:

{'y': '40.729978',
'x': '-73.994064',
'osmid': '42433292'}

{'y': '40.7309542',
'x': '-73.9932433',
'osmid': '42449589'}

Intersection data

Speed limit

of lanes

Road length

GPS
coordinates

Relating Attributes to Traffic Volume

For analysis, we are interested in the
predictive capability of each attribute for
traffic volume.

Problem: the traffic volume space is 24
dimensions. Impossible to visualize without
dimensionality reduction.

Solution: reduce 24-hour volume vector
down to a single value representing the
whole vector, so we can plot attribute value
vs. traffic volume. Attribute value

?

Relating Attributes to Traffic Volume
Claim: the daily volume count (a.k.a. vector-wise sum) is a very good single-value
representation of the 24-hour traffic volume.

Evidence:
Normalization

• If we divide each 24-hour volume vector by
its sum, then the hour-wise distributions are
very compact and reflect a clear pattern in
daily traffic:

• 12am–5am: low volume; sleeping

• 7am-9am: high volume; going to work

• 4pm-6pm: high volume; leaving work

Relating Attributes to Traffic Volume
Claim: the daily volume count (a.k.a. vector-wise sum) is a very good single-value
representation of the 24-hour traffic volume.

Evidence: Principal Component Analysis (PCA)

• If we use Scikit-Learn’s implementation of
PCA [X] to project the 24-dimension traffic
volume space onto a single dimension that
best preserves variance among the samples,
we observe that the learned 1D distribution of
values is almost perfectly () directly
related to daily volume count.

R2 ≈ 1

1. GPS Coordinate
Hypothesis: Road segments within a
geographic cluster are likely to reflect similar
patterns in traffic volume.

Observations:

• Complex relationship between latitude-
longitude and traffic volume

• Stations are (reasonably) well-distributed

Evaluation:

• Some clusters of similar volume exist

• Geographic location may be good
predictor in a large capacity model

Central Park

Financial District

1. GPS Coordinate
Preprocessing Method:

K-Means Clustering

• Algorithm finds centroids that best
represent the distribution of data

• Each centroid defines a cluster, and
stations are assigned to closest centroid

• We use with SciKit-Learn’s
implementation [4] for preprocessing

Encoding:

K

K = 20

Clustering example of K = 10

yes: 1, no : 0

Station in
cluster 1?

Station in
cluster 2? … Station in

cluster 20?

s

Station →

2. Road Length (m)
Hypothesis: Longer road segments are more
important to the structure of the network,
thus possess higher traffic volume levels.

Observations:

• Virtually no linear relationship between
road length and traffic volume

• Outliers (long road segments) tend to
reflect higher volume.

Evaluation:

• Road length, in isolation, appears to be a
poor predictor of traffic volume

• May serve some use in complex regressors

2. Road Length (m)
Preprocessing Method: Normalization (w.r.t. the train set mean & std. deviation)

Justification: easily interpretable, boosts convergence speed in neural networks

Encoding:
Station → (road length − μtrain)/σtrain

 mean of road lengths in train set

 std. deviation of road lengths in train set

μtrain :
σtrain :

3. Speed Limit (mph)
Hypothesis: Vehicles are more likely to take
roads with faster speed limits, so daily
volume count should be directly related to
speed limit

Observations:

• Significant amount of stations are missing
a speed limit

• Traffic volume begins to decrease slightly
after 35mph

Evaluation: Generally a direct relationship,
and the slight decrease may be explained by
the lack of 40mph examples

3. Speed Limit (mph)
Preprocessing Method:

Handling missing data & Normalization

• The speed limit is encoded with two
values: (1) a bit indicating whether or not
the true value is missing, and (2) the
normalized speed limit, or 0 if it’s missing

Encoding:

Missing value?
yes: 1, no: 0

0 if missing;
normalized
value if not

Station →

4. Number of Lanes
Hypothesis: Vehicles are more likely to take
roads with more lanes, so daily volume count
should be directly related to number of lanes

Observations:

• Vast majority of stations are missing a
number of lanes

• Traffic volume begins to decrease after 3
lanes

Evaluation: As number of lanes increases,
the traffic volume increases up until a point,
then comes back down due to the sheer
openness of the road.

4. Number of Lanes
Preprocessing Method:

Handling missing data & Normalization

• The number of lanes is encoded with two
values: (1) a bit indicating whether or not
the true value is missing, and (2) the
normalized number of lanes, or 0 if it’s
missing

Encoding:

Missing value?
yes: 1, no: 0

0 if missing;
normalized
value if not

Station →

[3]
Dataset Generation

& Preprocessing

Contents
1. Traffic Station

Overview
2. Station Road

Segment Mapping
3. Dataset Generation

Pipeline
4. OSM Feature Selection
5. Feature Engineering
6. Cross Validation

→

5. Direction
Calculation:

 : coordinates of starting intersection

 : coordinates of ending intersection

, where:

Hypothesis: Road segments traveling in the
same direction may share similar daily
patterns in traffic volume.

(x1, y1)

(x2, y2)

direction = (N/S, E/W)

N/S = {N if y2 − y1 ≥ 0
S otherwise

E/W = {E if x2 − x1 ≥ 0
W otherwise

(N,E)(N,W)

(S,E)(S,W)

(x2, y2)

(x1, y1) x2 − x1

y2 − y1

5. Direction
Observation:

• Relatively uniform distribution

• NE and SW have slightly higher traffic
volume, while NW and SE have slightly
lower volume. Very minimal difference.

Evaluation: Direction not a good predictor of
traffic volume in itself, but may serve to be a
useful splitter in Decision Trees or Random
Forests.

Preprocessing Method: None

Encoding: yes: 1, no : 0

Traveling
North?

Traveling
South?

Traveling
East?

Traveling
West?Station →

6. Arctan (radians)
Calculation:

 : coordinates of starting intersection

 : coordinates of ending intersection

Hypothesis: Road segments tilted at similar
angles (independent of direction) may be
more likely to possess similar patterns in
traffic volume.

(x1, y1)

(x2, y2)

arctan = {arctan (y2 − y1

x2 − x1) if x1 ≠ x2

π/2 otherwise

(x2, y2)

(x1, y1) x2 − x1

y2 − y1

6. Arctan (radians)
Observations:

• Examples heavily clustered at -0.4 and 0.9

• Road segments in these clusters possess
slightly higher traffic volume count

Evaluation: Road segments in one of the -0.4
or 0.9 clusters are slightly more likely to have
a higher traffic volume count.

Preprocessing Method: None

Encoding:

Arctan value Station →

7. Speed Limit Road Length÷

Definition: A metric proportional to

Calculation:

Hypothesis: Since vehicles would prefer to
take faster roads, it would make sense that a
metric inversely proportional to time is
indirectly related to traffic volume.

1/time

s ÷ r =

speed_limit
road_length

if speed_limit exists

20
road_length

otherwise

7. Speed Limit Road Length÷
Observations:

• S R values within a standard deviation
of the mean appear to have no pattern

• Outliers (> +) appear to have lower
traffic volume

Evaluation: Looks to be a poor predictor of
traffic volume, unless an outlier happens to
be sampled

Preprocessing Method: Normalization

Encoding:

÷

σ

Station → (S/R − μtrain)/σtrain

8. Road Length Number of Lanes×
Definition: A metric representing the amount of
space on a road segment

Calculation:

Hypothesis: Long road segments with many lanes
should attract lots of vehicles, thus possess higher
levels of traffic volume. There should be a direct
relationship between this metric and traffic
volume.

r × ℓ = {road_length × num_lanes if num_lanes exists
road_length otherwise

 Lots of space

 Little space

8. Road Length Number of Lanes×
Observations:

• R L values within a standard deviation
of the mean appear to have no pattern

• Outliers (> +) appear to have higher
traffic volume

Evaluation: This metric seems to be a
realivetly poor predictor of traffic volume,
unless an outlier is sampled

Preprocessing Method: Normalization

Encoding:

×

σ

Station → (R*L − μtrain)/σtrain

9. In-Degree
Definition: The number of road segments (1)
adjacent to, and (2) directed at the starting
intersection of the road segment.

Computation:

Networkx function in_degree [5]

Hypothesis: Road segments with higher in-
degrees have more incoming traffic, thus
receive higher levels of traffic volume.

Road segment

Has in-degree

4

9. In-Degree
Observations:

• Symmetric distribution centered at 2

• Apparent inverse relationship between in-
degree and traffic volume

Evaluation: The hypothesis looks to be the
opposite of reality; as the in-degree
increases, the traffic volume appears to
decrease

Preprocessing Method: Normalization

Encoding:

Station → (ID − μtrain)/σtrain

10. Out-Degree
Definition: The number of road segments (1)
adjacent to, and (2) directed away from the
ending intersection of the road segment.

Computation:

Networkx function out_degree [6]

Hypothesis: Road segments with higher out-
degrees have more places to go, thus receive
more traffic and consequently higher levels
of traffic volume.

Road segment

Has out-degree

3

10. Out-Degree
Observations:

• Symmetric distribution centered at 2

• Apparent inverse relationship between out-
degree and traffic volume, until 4

Evaluation: The hypothesis looks to be the
opposite of reality; as the out-degree
increases, the traffic volume appears to
decrease up to 4, then increases

Preprocessing Method: Normalization

Encoding:

Station → (OD − μtrain)/σtrain

11. Betweenness Centrality
Definition: The percentage of shortest paths
that run through a road segment

Calculation:

number of shortest paths
between and including edge

Hypothesis: If a road segment has a high
betweenness centrality, then it’s important to
the road network structure, so it should
receive higher levels of traffic volume.

bet(e) = ∑
s≠t

σ(s, t, e)
σ(s, t)

σ(s, t, e) =
s t e

HighLow

Edge Betweenness

11. Betweenness Centrality
Observations:

• Values below the mean appear to be
very spread out

• Values above the mean appear to have
higher traffic volume

Evaluation: Not a great predictor of traffic
volume overall, but some pattern emerges
with data above the mean

Preprocessing Method: Normalization

Encoding:

Station → (bet − μtrain)/σtrain

12. Closeness Centrality
Definition: The average of the shortest paths
between the road segment and every other
road segment

Calculation:

the length of the shortest path
between edges and

Hypothesis: If a road segment has a high
closeness centrality, then it’s important to the
road network structure, so it should receive
higher levels of traffic volume.

clos(e) =
1

|E | − 1 ∑
e′ ≠e

d(e, e′)

d(e, e′) =
e e′

HighLow

Closeness

12. Closeness Centrality
Observations:

• Values close to the mean appear to
follow no pattern

• Outliers (< -) appear to have higher
traffic volume

Evaluation: Very poor predictor of traffic
volume in isolation, although a slight pattern
emerges with outliers below the mean

Preprocessing Method: Normalization

Encoding:

σ

Station → (clos − μtrain)/σtrain

Feature Vector Encoding

Features

20 1 2 2 4 1 1 1 1 1 1 1

GPS Coordinate
(Cluster)

Speed Limit
(Normalized)

Direction

Closeness
Centrality

(Normalized)

Speed
Road Length
(Normalized)

÷ In Degree
(Normalized)

Road Length
(Normalized) # of Lanes

(Normalized)

Betweenness
Centrality

(Normalized)

Arctan

Road Length
 # of Lanes

(Normalized)
×

Out Degree
(Normalized)

[3]
Dataset Generation

& Preprocessing

Contents
1. Traffic Station

Overview
2. Station Road

Segment Mapping
3. Dataset Generation

Pipeline
4. OSM Feature Selection
5. Feature Engineering
6. Cross Validation

→

5-Fold Cross Validation Example

Fold #1

Fold #2

Fold #3

Fold #4

Fold #5

Train set

Test set

Feature-target
example:

Predictive
Modeling

Contents
1. Modeling Overview
2. K-Nearest Neighbors
3. Decision Tree
4. Random Forest
5. Neural Network
6. Model Comparison

General ML Pipeline

1
2
3

10
⋮

10-Fold Cross Validation

Hyperparameter
spaces

ML Algorithm Learned Model

All road
segments

Volume
predictions

Hierarchy of ML Algorithms

Instance-based
learning

Supervised
Learning

Model-based
learning

K-Nearest
Neighbors Decision Tree Random Forest Neural Network

*Parameters
stored in
memory

Examples*
stored in
memory

Predictive
Modeling

Contents
1. Modeling Overview
2. K-Nearest Neighbors
3. Decision Tree
4. Random Forest
5. Neural Network
6. Model Comparison

Overview of the KNN Algorithm
Training:

• No training; instead, store each train example

in memory for testing

Testing:

• Algorithm defined as follows:

1. Input: feature (goal is to predict)

2. Calculate for each in the train set and

some distance metric . Find the examples yielding
the smallest distances:

3. Set mean or median of

{(xi, yi)}i∈[n]

xnew ynew

d(xnew, xi) xi
d K
(x*1 , y*1), …, (x*1 , y*K)

̂ynew = y*1 , y*2 , …, y*K

 Example:K = 2

d(xnew, x1)

d(xnew, x2) d(xnew, x3)

(x1, y1)

(x3, y3)

(x2, y2)

(xnew, ynew)

̂ynew =
1
2 (y1 + y3)

Review of Distance Metric d
Conventional use:

• Euclidean distance (L2 Norm)

•

Our use:

• Length of shortest path in network
between edges

• Features = directed edges

• length of shortest path
between edges and

• Implemented with NetworkX’s
single_source_djikstra function [7]

d(x1, x2) = ∥x1 − x2∥2

d(e1, e2) =
e1 e2

Train edge

Test edge

Shortest
path

2

4

5

Hyperparameter Tuning & Results

Hyperparameter Search: to in steps of 1, to in steps of 5K ∈ 1 20 25 100

 Optimal
 Underfitting

Overfitting

1

1

Best Result:

K = 10 : 309.0

Animations of Traffic Predictions

Underfitting

K = 150

Optimal

K = 10

Overfitting

K = 1

Predictive
Modeling

Contents
1. Modeling Overview
2. K-Nearest Neighbors
3. Decision Tree
4. Random Forest
5. Neural Network
6. Model Comparison

Overview of Decision Tree Algorithm
Training:

• Builds a tree where the nodes are splits
(decisions) and the leafs are predictions.

• From the root, each node attempts to find the
best attribute split

• Best: looks for single attribute split that
maximizes information gain (greedy approach)

• Random*: chooses random attribute split out
of ones that achieve information gain

• Leafs are made by averaging over the volumes of
examples left

Feature: x1 x2 x3

 ?x2 < 5

 ?x3 > 0 ?x1 ≤ 8

50 75 100 125

YesNo

YesYesNo No

Overview of Decision Tree Algorithm
Regularization (Pre-Pruning) Methods:

1. Placing a limit on the depth of the tree

• Decreasing max_depth hyperparameter

2. Restricting the amount of attributes
considered for splitting

• Decreasing max_features hyperparameter

Implementation:

• SciKit-Learn’s DecisionTreeRegressor class [8]
handles multi-output regression

• Criterion: MAE, Splitting: Random

Feature: x1 x2 x3

 ?x2 < 5

 ?x3 > 0 ?x1 ≤ 8

50 75 100 125

YesNo

YesYesNo No

Hyperparameter Tuning & Results
Hyperparameter Search:

• to in steps of 1max_depth ∈ 2 15 • max_features ∈ {0.4,0.5,0.6,0.7,0.8,0.9}

1 23

1

Best Results:

2

3

max_depth = 10
max_features = 0.5

max_depth = 11
max_features = 0.7

max_depth = 6
max_features = 0.9

: 305.5

: 305.8

: 307.7

Overfitting

Underfitting
Optimal

Animations of Traffic Predictions

Underfitting
max_depth = 1
max_features = 1

Optimal
max_depth = 10
max_features = 0.5

Overfitting
max_depth = 20
max_features = 1

Predictive
Modeling

Contents
1. Modeling Overview
2. K-Nearest Neighbors
3. Decision Tree
4. Random Forest
5. Neural Network
6. Model Comparison

Overview of Random Forest Algorithm
Training:

• A group of trees are built using random splitting

• Each tree is trained to predict the multi-output

Testing:

• The final prediction is the mean or median of
each tree’s individual prediction

Regularization methods:

1. Adding more trees to the forest

• Increasing n_estimators hyperparameter

2. Placing a limit on the depth of each tree

• Decreasing max_depth hyperparameter

Tree #1 Tree #2

101 122

Tree #3

200

Prediction:
(101+122+200) / 3

141

Overview of Random Forest Algorithm
Regularization methods:

1. Adding more trees to the forest

• Increasing n_estimators hyperparameter

2. Placing a limit on the depth of each tree

• Decreasing max_depth hyperparameter

Implementation:

• SciKit-Learn’s RandomForestRegressor class [9]
handles multi-output regression

• Criterion: MAE

Tree #1 Tree #2

101 122

Tree #3

200

Prediction:
(101+122+200) / 3

141

Hyperparameter Tuning & Results
Hyperparameter Search:

• n_estimators ∈ {2,5,10,20,50,100,150,200} • to in steps of 2max_depth ∈ 2 10

1 2

Best Results:

2
n_estimators = 150
max_depth = 6 : 292.9

3

1
n_estimators = 50
max_depth = 6 : 292.2

3
n_estimators = 100
max_depth = 6 : 293.8

Overfitting

Underfitting

Optimal

Animations of Traffic Predictions

Underfitting
n_estimators = 2
max_depth = 1

Optimal
n_estimators = 50
max_depth = 6

Overfitting
n_estimators = 1
max_depth = 20

Predictive
Modeling

Contents
1. Modeling Overview
2. K-Nearest Neighbors
3. Decision Tree
4. Random Forest
5. Neural Network
6. Model Comparison

Overview of Neural Network Algorithm
Training:

• Network parameters (weights & biases) are
optimized via backpropagation

Testing:

• The road segment feature is fed through the
network to produce a 24-hour volume prediction

Regularization methods:

• Early stopping: stop when test error begins to rise

Hyperparameters:

• Learning rate: scale for weight update

• # of hidden layers: how deep the network is

Linear: 32 × 30

Linear: 30 × 26

Linear: 26 × 24

Input: Size 32

Output: Size 24

ReLU

ReLU

Overview of Neural Network Algorithm
Hyperparameters:

• Learning rate: scale for weight update

• # of hidden layers: how deep the network is

Implementation:

• Pytorch nn.Module with structure shown:

• MAE loss

• Adam optimization

• Batch size of 32

• Early stopping – 5 iterations without new
best test loss

32 24
 32 (1 −

i
h + 1)

+24 (i
h + 1)

Input Layer

Output Layer
Hidden Layer i

 = # of hidden layersh

Hyperparameter Tuning & Results
Hyperparameter Search:

• lr ∈ {10−5, 2 × 10−5, 5 × 10−5, 10−4} • hidden_layers ∈ {0, 1, 2, 5, 10, 15, 20}

Best Results:

2 : 290.3

2

1
hidden_layers = 5
lr = 5e-5 : 289.7

3 : 290.6

31

Optimal

Underfitting

hidden_layers = 2
lr = 1e-4

hidden_layers = 5
lr = 2e-5

Animations of Traffic Predictions

Underfitting
hidden_layers = 0
lr = 1e-5

Optimal
hidden_layers = 5
lr = 5e-5

Overfitting
hidden_layers = 10
lr = 1e-4

*no early stopping

Predictive
Modeling

Contents
1. Modeling Overview
2. K-Nearest Neighbors
3. Decision Tree
4. Random Forest
5. Neural Network
6. Model Comparison

Comparing the Best Models

K-Nearest
Neighbors Decision Tree Random

Forest
Neural

Network

Test error
(mean ± std.) 309.0 ± 56.6 305.5 ± 69.0 292.2 ± 37.5 289.7 ± 48.7

Train time 0s 916ms 301ms 8.27s

Test time 295s 1.29s 1.92s 1.29s

Model Evaluation
& Discussion

Contents
1. The Overarching

Questions
2. Trustworthiness
3. Performance
4. Improvements
5. Merits

Questions We Look to Address
Model Trustworthiness: In this project, we fit models on a dataset of 310 road segments, but
make predictions with these models for 9000+ unforeseen road segments. How reliable are
these predictions? How do we know?

Model Performance: We received generally similar results for each algorithm. What do these
results mean? Can we really quantify “performance” with one metric? How does this affect the
way models learn in our project?

Project Improvements: How could we improve the outcome of the project? Should we go
about the collection of data differently? With better data, should we keep the algorithms we
use, or expand our consideration?

Project Merits: We covered a lot of content in this project. What are the biggest takeaways? If
appropriately refined, how could the deliverables of this project serve use to the public?

Model Evaluation
& Discussion

Contents
1. The Overarching

Questions
2. Trustworthiness
3. Performance
4. Improvements
5. Merits

Model Trustworthiness
• An underlying assumption in supervised learning is that the training features and testing

features are independent and identically distributed.

• Consider the feature vector as a 36-dimension random variable: ,

where is a random variable of the th dimension. If is the feature-generating distribution

of road segments with stations (our training features), and is the feature-generating
distribution of all road segments in the network, then we’d like for and to be as similar
as possible.

• A common measurement of distribution similarity is the KL Divergence [X]:

, where is the ground-truth distribution and is the

estimated distribution.

F := (X1, X2, X3, …, X36)
Xi i QF

PF
QF PF

DKL(P∥Q) =
n

∑
i=1

P[i] × log (P[i]
Q[i]) P Q

Model Trustworthiness
Partition of the feature distribution:

Index Attribute Bins

0 GPS Coor. Cluster 0: {0}, 1: {1}, 2: {2}, 3: {3}, 4: {4}

1 Road Length 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

2 Speed Limit 0: {Missing}, 1: [0,25), 2: {25}, 3: (25, ∞)

3 # of Lanes 0: {Missing}, 1: {1,2}, 2: {3,4}, 3: [5,∞)

4 Direction 0: {NE}, 1: [NW), 2: {SE}, 3: (SW)

5 Betweenness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

6 Closeness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

7 Total Degrees 0: {1,2,3}, 1: {4,5}, 2: [6, ∞)

Distribution Examples:

Model Trustworthiness
Partition of the feature distribution:

Index Attribute Bins

0 GPS Coor. Cluster 0: {0}, 1: {1}, 2: {2}, 3: {3}, 4: {4}

1 Road Length 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

2 Speed Limit 0: {Missing}, 1: [0,25), 2: {25}, 3: (25, ∞)

3 # of Lanes 0: {Missing}, 1: {1,2}, 2: {3,4}, 3: [5,∞)

4 Direction 0: {NE}, 1: [NW), 2: {SE}, 3: (SW)

5 Betweenness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

6 Closeness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

7 Total Degrees 0: {1,2,3}, 1: {4,5}, 2: [6, ∞)

Bins via cartesian product:

: 0, 0, 0, 0, 0, 0, 0, 0B1

: 0, 0, 0, 0, 0, 0, 0, 1B2

: 0, 0, 0, 0, 0, 0, 0, 2B3

: 4, 2, 3, 3, 3, 2, 2, 2B∼25k

⋮

Total: ~25,000

Model Trustworthiness
We will use and to approximate and , respectively.

Sample space of :

• the road segment belongs to Bin 1

• the road segment belongs to Bin 2, and so on…

We can easily compute and since is discrete.

Our assumption:

QB PB QF PF

B

B1 =

B2 =

QB PB B

QB ≈ PB ⟷ QF ≈ PF

Bins via cartesian product:

: 0, 0, 0, 0, 0, 0, 0, 0B1

: 0, 0, 0, 0, 0, 0, 0, 1B2

: 0, 0, 0, 0, 0, 0, 0, 2B3

: 4, 2, 3, 3, 3, 2, 2, 2B∼25k

⋮

Total: ~25,000

Model Trustworthiness
Hypothesis Test: Is there evidence to suggest that the train
examples (road segments with stations) are not drawn from

, the ground-truth road segment distribution?

Null hypothesis: The train examples were sampled from

Alternate hypothesis: The train examples were sampled from
a different distribution.

Significance level:

Approach: Draw 10,000 samples of size 310 from , and for

each sample, compute , where is the

sample distribution over . Plot a histogram of the results.

PB

PB

α = 0.05

PB

DKL (PB ∥ ̂PB) ̂PB

B

Model Trustworthiness
Assume that the training examples were sampled from .
If is the sample distribution, then with 95% ()
confidence, we would expect to be less than

the upper bound .

Test statistic:

Conclusion: Since is not less than the 95% upper
bound, then we reject the null hypothesis and claim that
there exists sufficient evidence to suggest that the training
examples were not drawn from the ground-truth road
segment distribution.

Bigger picture: the train & test distributions are different
enough to raise concern for our model’s ability to generalize.

PB
QB 1 − α

DKL (PB ∥ QB)
2.76

DKL (PB ∥ QB) = 2.85

2.85
P-value = 0.0218

Model Evaluation
& Discussion

Contents
1. The Overarching

Questions
2. Trustworthiness
3. Performance
4. Improvements
5. Merits

Model Performance
A Neural Network with 5 hidden layers and
learning rate achieves a test loss of

What does this value mean?

• On average, the model’s hourly traffic volume
prediction is off from the ground truth by 272.9

• Every minute, the model’s volume count is only
4.55 vehicles off.

Is "mean MAE” a good performance metric?

• Very sensitive to outliers

• Must keep in mind full MAE distribution

• Sometimes, a necessary evil for deep learning

5 × 10−5

272.9

25% 50% 75%

Per hour 67.6 166.0 332.0

Per minute 1.13 2.77 5.53

Model Evaluation
& Discussion

Contents
1. The Overarching

Questions
2. Trustworthiness
3. Performance
4. Improvements
5. Merits

Improving Dataset Collection
My suggestions:

1. Target-side modifications

• Add more stations if possible (500? 1k?)

✓ Better for deep learning models

• Sample road segments from

✓ Identical train & test distributions

2. Feature-side modifications

• Add more information about each road segment’s
surroundings (e.g. residence, work, population)

✓ More for the model to learn on

PB

Rendering of map with
NetworkX: 500 stations
drawn from are redPB

Model Evaluation
& Discussion

Contents
1. The Overarching

Questions
2. Trustworthiness
3. Performance
4. Improvements
5. Merits

Project Merits
• In 2017, NYSDOT purchased traffic stations for

roughly $800 each [X]

• Stations for 310 road segments would cost
~$248,000

• Stations for all road segments would cost
~$7.7 million

• Counting each road segment by machine would
give the best results, but is ~30x more expensive

• Thus, realistic & accurate ML traffic volume
generation would economically serve great use
to state DOTs

 Arizona DOT [X]

 Wisconsin DOT [X]

References
[1] https://www.dot.ny.gov/tdv

[2] https://www.openstreetmap.org/

[3] https://www.kaggle.com/code/usui113yst/basic-network-analysis-tutorial

[4] https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

[5] https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.DiGraph.in_degree.html

[6] https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.DiGraph.out_degree.html

[7] https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html

[8] https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

[9] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://www.dot.ny.gov/tdv
https://www.openstreetmap.org/
https://www.kaggle.com/code/usui113yst/basic-network-analysis-tutorial
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.in_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.in_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.in_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.out_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.out_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.out_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

