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Brief Introduction
Hello, I’m Kyle Otstot! 

• Third year major in Computer Science & 
Mathematics 

• Incoming Master’s in Computer Science 

• Research Assistant at ASU 

• Robustifying ML models under real-world 
dataset corruptions 
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CSE Capstone Project
Dynamic Shortest-Path Algorithm: 

• Every hour, the algorithm predicts the shortest 
path between any start / end points in a fixed road 
network 

• The algorithm needs the following: 

• Structure (nodes / edges) of road network 

• Hourly edge weights – expected travel time 

• Road network & hourly data should be realistic 

Honors Thesis/ Creative Project: 

• An extension of the capstone project Start

End
12:00pm

2:00pm

5:00pm



Searching For Traffic Data
How is real-world traffic measured? 

• Traffic volume: the number of passing cars per unit 
of time (cars/hour) 

• Traffic density: the number of cars in a specified 
length of roadway (cars/mile) 

•  

• New York State Department of Transportation 
(NYSDOT) reports hourly traffic volume [1] 

• Traffic density is not recorded 

• Set constant, focus on obtaining traffic volume

travel time (hour) =
density (cars/mile) × road length (miles)

volume (cars/hour)



Searching For a Road Network
Where can we find a real-world road network? 

• OpenStreetMap (OSM) is a free geographic 
database of the world [2] 

• A GraphML file of Manhattan, New York City was 
created from the OSM database [3] 

• The Manhattan graph consists of the following: 

• Nodes (Intersections) 

• Node data (GPS coordinates, roads, etc.) 

• Directed edges (Road segments) 

• Edge data (road name, length, speed limit, etc.)



Problem Setup
Dataset Generation 

& Preprocessing

Predictive Modeling Model Evaluation 
& Discussion
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Insufficient Data
• In order to make predictions with a dynamic shortest-

path algorithm, we need hourly traffic volume for each 
road segment (edge) in the network 

• However, NYSDOT only receives hourly traffic volume 
from a small subset of road segments 

• Hourly traffic volume is collected by traffic stations

Traffic stations are red
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Learn       , Predict

Machine Learning Solution?
Research Question: 

• Can we develop a Machine Learning (ML) algorithm that 
generalizes the NYSDOT data to all road segments in 
Manhattan? 

• Can a model make accurate predictions on unforeseen 
road segments by learning the traffic patterns in ~300 
recorded examples? 

Main Tasks: 

1. Generate & preprocess a supervised learning dataset 

• Input – road segment attributes 

• Output – hourly traffic volume 

2. Evaluate the performance of ML algorithms on the dataset
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Technologies Used
Programming: 

• Python & Jupyter Notebook 

Python libraries: 

• General use 

✓ Numpy, Pandas 

• Data visualization 

✓ Matplotlib, Pandas 

• Graph handling 

✓ Networkx 

• Machine Learning 

✓ Scikit-Learn, Pytorch
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Traffic Station Overview
Traffic Station: a device that counts the 
number of passing vehicles and reports 
hourly traffic volume. 

Station details: 

• Each station belongs to one road segment 

• Total of 310 stations in Manhattan 

• A 24-hour volume breakdown for each 
station is reported 

12am 1am 2am … 9pm 10pm 11pm

656 352 252 … 1265 1068 878

= Station = Road segment



Traffic Station Overview
Main idea: create a function that receives any road 
segment and predicts a 24-hour volume vector. 

Procedure: 

• Train a ML model on pairs of road segment 
attributes (input) and 24-hour traffic volume 
(“ground-truth” output) 

• Test the model on pairs not used for training 

Next steps: 

• For each station, find the road segment that 
contains it 

• Pair the road segment attributes with the 
corresponding station 24-hour volume

= Train input = Test input
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Station Database Breakdown

74th St.

Traffic station information taken from the NYSDOT public database.

Grand Ave.

Calamus Ave.

Station



Road Segment Data Breakdown
Road segment information taken from OpenStreetMap.

Feature Total # Data example

Node 
(Intersection) 4426

Edge 
(Road segment) 9609

Simple rendering of 
map with Networkx



Mapping Stations to Road Segments
Attempt #1- by road names:  

1. Input: Station ID (RCSTA + Direction)  

2. From NYSDOT data, find 

• Start intersection (“Roadway name”, 
“Station start”) 

• End intersection (“Roadway name”, 
“Station end”) 

3. Search OSM data for all the edges that 
correspond to each road name. From here 
you can derive the two intersection IDs 

4. Find the particular edge that contains both 
intersection IDs: this is your road segment

Road name match example: 

Database Road name

NYDOT E 79TH ST

OSM East 79th Street

Token conversions:  

• N,S,E,W  North, South, East, West 

• Uppercase  Capitalize first letter only 

• St, Ave, Rd  Street, Avenue, Road

⇒

⇒

⇒



Mapping Stations to Road Segments
Attempt #1- by road names:  

1. Input: Station ID (RCSTA + Direction)  

2. From NYSDOT data, find 

• Start intersection (“Roadway name”, 
“Station start”) 

• End intersection (“Roadway name”, 
“Station end”) 

3. Search OSM data for all the edges that 
correspond to each road name. From here 
you can derive the two intersection IDs 

4. Find the particular edge that contains both 
intersection IDs: this is your road segment

NYSDOT 
road names

OSM      
road names

1788 711105



Mapping Stations to Road Segments
Attempt #2- by latitude & longitude:  

1. Input: Station ID (RCSTA + Direction)  

2. From NYSDOT data, find latitude & longitude 

3. Determine the similarly-directed road segment with 
the following formula:  

 

where…

edge* = min
E∈edges

d(E) := ys − (m(E)(xs − x(E)
1 ) + y(E)

1 )

 long, lat of edge ’s start intersection 

 long, lat of edge ’s end intersection

(x(E)
1 , y(E)

1 ) : E

(x(E)
2 , y(E)

2 ) : E

,  random noise 

 long, lat of station

m(E) =
y(E)

2 − y(E)
1

x(E)
2 − x(E)

1 + ϵ
ϵ :

(xs, ys) :

d(E1)

d(E2)

E1

E2

 is chosen since 
  

E1
d(E1) < d(E2)



Mapping Stations to Road Segments
Rendering of map with 
Networkx: stations are 
red and chosen road 
segments are cyan

Attempt #2- by latitude & longitude:  

1. Input: Station ID (RCSTA + Direction)  

2. From NYSDOT data, find latitude & longitude 

3. Determine the similarly-directed road segment with 
the following formula:  

 

Final Results:  

• Appears to be an accurate approximation of the true 
station  road segment mapping

edge* = min
E∈edges

d(E) := ys − (m(E)(xs − x(E)
1 ) + y(E)

1 )

→
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Dataset Generation Pipeline

Pool of examples
Road segment Station

Attributes 24-hour volume

)( ,
Given the attributes, how well can we predict the 24-hour volume?



Dataset Generation Pipeline

Station #1 →

Features Targets

Station #2 →

Station #310 →

⋮

Vector of encoded attributes 
from OSM

 Station #2←

 Station #310←

⋮

 Station #1←

24-hour volume vector 
from NYSDOT
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Identifying Relevant Attributes From OSM
OSM data of road segment:

{'y': '40.729978', 
'x': '-73.994064', 
'osmid': '42433292'}

{'y': '40.7309542', 
'x': '-73.9932433', 
'osmid': '42449589'}

Intersection data

Speed limit

# of lanes

Road length

GPS 
coordinates



Relating Attributes to Traffic Volume

For analysis, we are interested in the 
predictive capability of each attribute for 
traffic volume. 

Problem: the traffic volume space is 24 
dimensions. Impossible to visualize without 
dimensionality reduction. 

Solution: reduce 24-hour volume vector 
down to a single value representing the 
whole vector, so we can plot attribute value 
vs. traffic volume. Attribute value

?



Relating Attributes to Traffic Volume
Claim: the daily volume count (a.k.a. vector-wise sum) is a very good single-value 
representation of the 24-hour traffic volume. 

Evidence:
Normalization

• If we divide each 24-hour volume vector by 
its sum, then the hour-wise distributions are 
very compact and reflect a clear pattern in 
daily traffic: 

• 12am–5am: low volume; sleeping 

• 7am-9am: high volume; going to work 

• 4pm-6pm: high volume; leaving work



Relating Attributes to Traffic Volume
Claim: the daily volume count (a.k.a. vector-wise sum) is a very good single-value 
representation of the 24-hour traffic volume. 

Evidence: Principal Component Analysis (PCA)

• If we use Scikit-Learn’s implementation of 
PCA [X] to project the 24-dimension traffic 
volume space onto a single dimension that 
best preserves variance among the samples, 
we observe that the learned 1D distribution of 
values is almost perfectly ( ) directly 
related to daily volume count.

R2 ≈ 1



1. GPS Coordinate
Hypothesis: Road segments within a 
geographic cluster are likely to reflect similar 
patterns in traffic volume. 

Observations: 

• Complex relationship between latitude-
longitude and traffic volume 

• Stations are (reasonably) well-distributed 

Evaluation:  

• Some clusters of similar volume exist 

• Geographic location may be good 
predictor in a large capacity model

Central Park

Financial District



1. GPS Coordinate
Preprocessing Method:  

K-Means Clustering 

• Algorithm finds  centroids that best 
represent the distribution of data 

• Each centroid defines a cluster, and 
stations are assigned to closest centroid 

•  We use  with SciKit-Learn’s 
implementation [4] for preprocessing 

Encoding:

K

K = 20

Clustering example of K = 10

yes: 1,  no : 0

Station in 
cluster 1?

Station in 
cluster 2? … Station in 

cluster 20?

s

Station →



2. Road Length (m)
Hypothesis: Longer road segments are more 
important to the structure of the network, 
thus possess higher traffic volume levels. 

Observations: 

• Virtually no linear relationship between 
road length and traffic volume 

• Outliers (long road segments) tend to 
reflect higher volume. 

Evaluation:  

• Road length, in isolation, appears to be a 
poor predictor of traffic volume 

• May serve some use in complex regressors



2. Road Length (m)
Preprocessing Method: Normalization (w.r.t. the train set mean & std. deviation) 

Justification: easily interpretable, boosts convergence speed in neural networks 

Encoding:  
Station → (road length − μtrain)/σtrain

 mean of road lengths in train set 

 std. deviation of road lengths in train set

μtrain :
σtrain :



3. Speed Limit (mph)
Hypothesis: Vehicles are more likely to take 
roads with faster speed limits, so daily 
volume count should be directly related to 
speed limit 

Observations: 

• Significant amount of stations are missing 
a speed limit 

• Traffic volume begins to decrease slightly 
after 35mph 

Evaluation: Generally a direct relationship, 
and the slight decrease may be explained by 
the lack of 40mph examples



3. Speed Limit (mph)
Preprocessing Method: 

Handling missing data & Normalization 

• The speed limit is encoded with two 
values: (1) a bit indicating whether or not 
the true value is missing, and (2) the 
normalized speed limit, or 0 if it’s missing 

Encoding:

Missing value? 
yes: 1, no: 0

0 if missing; 
normalized 
value if not

Station →



4. Number of Lanes
Hypothesis: Vehicles are more likely to take 
roads with more lanes, so daily volume count 
should be directly related to number of lanes 

Observations: 

• Vast majority of stations are missing a 
number of lanes 

• Traffic volume begins to decrease after 3 
lanes 

Evaluation: As number of lanes increases, 
the traffic volume increases up until a point, 
then comes back down due to the sheer 
openness of the road.



4. Number of Lanes
Preprocessing Method: 

Handling missing data & Normalization 

• The number of lanes is encoded with two 
values: (1) a bit indicating whether or not 
the true value is missing, and (2) the 
normalized number of lanes, or 0 if it’s 
missing 

Encoding:

Missing value? 
yes: 1, no: 0

0 if missing; 
normalized 
value if not

Station →
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5. Direction
Calculation: 

 : coordinates of starting intersection 

 : coordinates of ending intersection 

, where: 

 

 

Hypothesis: Road segments traveling in the 
same direction may share similar daily 
patterns in traffic volume. 

(x1, y1)

(x2, y2)

direction = (N/S, E/W)

N/S = {N if  y2 − y1 ≥ 0
S otherwise

E/W = {E if  x2 − x1 ≥ 0
W otherwise

(N,E)(N,W)

(S,E)(S,W)

(x2, y2)

(x1, y1) x2 − x1

y2 − y1



5. Direction
Observation: 

• Relatively uniform distribution 

• NE and SW have slightly higher traffic 
volume, while NW and SE have slightly 
lower volume. Very minimal difference. 

Evaluation: Direction not a good predictor of 
traffic volume in itself, but may serve to be a 
useful splitter in Decision Trees or Random 
Forests. 

Preprocessing Method: None 

Encoding: yes: 1,  no : 0

Traveling 
North?

Traveling 
South?

Traveling 
East?

Traveling 
West?Station →



6. Arctan (radians)
Calculation: 

 : coordinates of starting intersection 

 : coordinates of ending intersection 

 

Hypothesis: Road segments tilted at similar 
angles (independent of direction) may be 
more likely to possess similar patterns in 
traffic volume.

(x1, y1)

(x2, y2)

arctan = {arctan ( y2 − y1

x2 − x1 ) if  x1 ≠ x2

π/2 otherwise

(x2, y2)

(x1, y1) x2 − x1

y2 − y1



6. Arctan (radians)
Observations: 

• Examples heavily clustered at -0.4 and 0.9 

• Road segments in these clusters possess 
slightly higher traffic volume count 

Evaluation: Road segments in one of the -0.4 
or 0.9 clusters are slightly more likely to have 
a higher traffic volume count. 

Preprocessing Method: None 

Encoding:

Arctan value Station →



7. Speed Limit  Road Length÷

Definition: A metric proportional to  

Calculation: 

 

Hypothesis: Since vehicles would prefer to 
take faster roads, it would make sense that a 
metric inversely proportional to time is 
indirectly related to traffic volume. 

1/time

s ÷ r =

speed_limit
road_length

if speed_limit exists

20
road_length

otherwise



7. Speed Limit  Road Length÷
Observations: 

• S R values within a standard deviation 
of the mean appear to have no pattern 

• Outliers (> + ) appear to have lower 
traffic volume 

Evaluation: Looks to be a poor predictor of 
traffic volume, unless an outlier happens to 
be sampled 

Preprocessing Method: Normalization 

Encoding:

÷

σ

Station → (S/R − μtrain)/σtrain



8. Road Length  Number of Lanes×
Definition: A metric representing the amount of 
space on a road segment 

Calculation: 

 

Hypothesis: Long road segments with many lanes 
should attract lots of vehicles, thus possess higher 
levels of traffic volume. There should be a direct 
relationship between this metric and traffic 
volume. 

r × ℓ = {road_length × num_lanes if num_lanes exists
road_length otherwise

 Lots of space 

 Little space 



8. Road Length  Number of Lanes×
Observations: 

• R L values within a standard deviation 
of the mean appear to have no pattern 

• Outliers (> + ) appear to have higher 
traffic volume 

Evaluation: This metric seems to be a 
realivetly poor predictor of traffic volume, 
unless an outlier is sampled 

Preprocessing Method: Normalization 

Encoding:

×

σ

Station → (R*L − μtrain)/σtrain



9. In-Degree
Definition: The number of road segments (1) 
adjacent to, and (2) directed at the starting 
intersection of the road segment. 

Computation: 

Networkx function in_degree [5] 

Hypothesis: Road segments with higher in-
degrees have more incoming traffic, thus 
receive higher levels of traffic volume.

Road segment 

Has in-degree 

4



9. In-Degree
Observations: 

• Symmetric distribution centered at 2 

• Apparent inverse relationship between in-
degree and traffic volume 

Evaluation: The hypothesis looks to be the 
opposite of reality; as the in-degree 
increases, the traffic volume appears to 
decrease 

Preprocessing Method: Normalization 

Encoding:

Station → (ID − μtrain)/σtrain



10. Out-Degree
Definition: The number of road segments (1) 
adjacent to, and (2) directed away from the 
ending intersection of the road segment. 

Computation: 

Networkx function out_degree [6] 

Hypothesis: Road segments with higher out-
degrees have more places to go, thus receive 
more traffic and consequently higher levels 
of traffic volume.

Road segment 

Has out-degree 

3



10. Out-Degree
Observations: 

• Symmetric distribution centered at 2 

• Apparent inverse relationship between out-
degree and traffic volume, until 4 

Evaluation: The hypothesis looks to be the 
opposite of reality; as the out-degree 
increases, the traffic volume appears to 
decrease up to 4, then increases 

Preprocessing Method: Normalization 

Encoding:

Station → (OD − μtrain)/σtrain



11. Betweenness Centrality
Definition: The percentage of shortest paths 
that run through a road segment 

Calculation: 

 

number of shortest paths 
between  and  including edge  

Hypothesis: If a road segment has a high 
betweenness centrality, then it’s important to 
the road network structure, so it should 
receive higher levels of traffic volume.

bet(e) = ∑
s≠t

σ(s, t, e)
σ(s, t)

σ(s, t, e) =
s t e

HighLow

Edge Betweenness 



11. Betweenness Centrality
Observations: 

• Values below the mean appear to be 
very spread out 

• Values above the mean appear to have 
higher traffic volume 

Evaluation: Not a great predictor of traffic 
volume overall, but some pattern emerges 
with data above the mean  

Preprocessing Method: Normalization 

Encoding:

Station → (bet − μtrain)/σtrain



12. Closeness Centrality
Definition: The average of the shortest paths 
between the road segment and every other 
road segment 

Calculation: 

 

the length of the shortest path 
between edges  and  

Hypothesis: If a road segment has a high 
closeness centrality, then it’s important to the 
road network structure, so it should receive 
higher levels of traffic volume.

clos(e) =
1

|E | − 1 ∑
e′ ≠e

d(e, e′ )

d(e, e′ ) =
e e′ 

HighLow

Closeness



12. Closeness Centrality
Observations: 

• Values close to the mean appear to 
follow no pattern 

• Outliers (< - ) appear to have higher 
traffic volume 

Evaluation: Very poor predictor of traffic 
volume in isolation, although a slight pattern 
emerges with outliers below the mean 

Preprocessing Method: Normalization 

Encoding:

σ

Station → (clos − μtrain)/σtrain



Feature Vector Encoding

Features

20 1 2 2 4 1 1 1 1 1 1 1

GPS Coordinate 
(Cluster)

Speed Limit 
(Normalized)

Direction

Closeness 
Centrality 

(Normalized)

Speed  
Road Length 
(Normalized)

÷ In Degree 
(Normalized)

Road Length 
(Normalized) # of Lanes 

(Normalized)

Betweenness 
Centrality 

(Normalized)

Arctan

Road Length 
 # of Lanes 

(Normalized)
×

Out Degree 
(Normalized)
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5-Fold Cross Validation Example

Fold #1

Fold #2

Fold #3

Fold #4

Fold #5

Train set

Test set

Feature-target 
example:



Predictive 
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5. Neural Network 
6. Model Comparison



General ML Pipeline

1
2
3

10
⋮

10-Fold Cross Validation

Hyperparameter 
spaces

ML Algorithm Learned Model

All road 
segments

Volume 
predictions



Hierarchy of ML Algorithms

Instance-based 
learning

Supervised 
Learning

Model-based 
learning

K-Nearest 
Neighbors Decision Tree Random Forest Neural Network

*Parameters 
stored in 
memory

Examples* 
stored in 
memory
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Overview of the KNN Algorithm
Training: 

• No training; instead, store each train example  

in memory for testing 

Testing: 

• Algorithm defined as follows: 

1. Input: feature  (goal is to predict ) 

2. Calculate  for each  in the train set and 

some distance metric . Find the  examples yielding 
the smallest distances:  

3. Set mean or median of 

{(xi, yi)}i∈[n]

xnew ynew

d(xnew, xi) xi
d K
(x*1 , y*1 ), …, (x*1 , y*K)

̂ynew = y*1 , y*2 , …, y*K

 Example:K = 2

d(xnew, x1)

d(xnew, x2) d(xnew, x3)

(x1, y1)

(x3, y3)

(x2, y2)

(xnew, ynew)

̂ynew =
1
2 (y1 + y3)



Review of Distance Metric d
Conventional use: 

• Euclidean distance (L2 Norm) 

•  

Our use: 

• Length of shortest path in network 
between edges 

• Features = directed edges 

• length of shortest path 
between edges   and  

• Implemented with NetworkX’s 
single_source_djikstra function [7]

d(x1, x2) = ∥x1 − x2∥2

d(e1, e2) =
e1 e2

Train edge

Test edge

Shortest 
path

2

4

5



Hyperparameter Tuning & Results

Hyperparameter Search:    to  in steps of 1,  to  in steps of 5K ∈ 1 20 25 100

 Optimal 
 Underfitting 

Overfitting

1

1

Best Result:

K = 10 : 309.0



Animations of Traffic Predictions

Underfitting  

K = 150

Optimal  

K = 10

Overfitting  

K = 1



Predictive 
Modeling

Contents 
1. Modeling Overview 
2. K-Nearest Neighbors 
3. Decision Tree 
4. Random Forest 
5. Neural Network 
6. Model Comparison



Overview of Decision Tree Algorithm
Training: 

• Builds a tree where the nodes are splits 
(decisions) and the leafs are predictions. 

• From the root, each node attempts to find the 
best attribute split 

• Best: looks for single attribute split that 
maximizes information gain (greedy approach) 

• Random*: chooses random attribute split out 
of ones that achieve information gain 

• Leafs are made by averaging over the volumes of 
examples left 

Feature:              x1 x2 x3

 ?x2 < 5

 ?x3 > 0  ?x1 ≤ 8

50 75 100 125

YesNo

YesYesNo No



Overview of Decision Tree Algorithm
Regularization (Pre-Pruning) Methods: 

1. Placing a limit on the depth of the tree 

• Decreasing max_depth hyperparameter 

2. Restricting the amount of attributes 
considered for splitting 

• Decreasing max_features hyperparameter 

Implementation: 

• SciKit-Learn’s DecisionTreeRegressor class [8] 
handles multi-output regression 

• Criterion: MAE, Splitting: Random

Feature:              x1 x2 x3

 ?x2 < 5

 ?x3 > 0  ?x1 ≤ 8

50 75 100 125

YesNo

YesYesNo No



Hyperparameter Tuning & Results
Hyperparameter Search: 

•  to  in steps of 1max_depth ∈ 2 15 • max_features ∈ {0.4,0.5,0.6,0.7,0.8,0.9}

1 23

1

Best Results:

2

3

max_depth = 10 
max_features = 0.5

max_depth = 11 
max_features = 0.7

max_depth = 6 
max_features = 0.9

: 305.5

: 305.8

: 307.7

Overfitting

Underfitting
Optimal



Animations of Traffic Predictions

Underfitting 
max_depth = 1 
max_features = 1

Optimal  
max_depth = 10 
max_features = 0.5

Overfitting 
max_depth = 20 
max_features = 1



Predictive 
Modeling

Contents 
1. Modeling Overview 
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Overview of Random Forest Algorithm
Training: 

• A group of trees are built using random splitting 

• Each tree is trained to predict the multi-output 

Testing: 

• The final prediction is the mean or median of 
each tree’s individual prediction 

Regularization methods: 

1. Adding more trees to the forest 

• Increasing n_estimators hyperparameter 

2. Placing a limit on the depth of each tree 

• Decreasing max_depth hyperparameter

Tree #1 Tree #2

101 122

Tree #3

200

Prediction:
(101+122+200) / 3

141



Overview of Random Forest Algorithm
Regularization methods: 

1. Adding more trees to the forest 

• Increasing n_estimators hyperparameter 

2. Placing a limit on the depth of each tree 

• Decreasing max_depth hyperparameter 

Implementation: 

• SciKit-Learn’s RandomForestRegressor class [9] 
handles multi-output regression 

• Criterion: MAE

Tree #1 Tree #2

101 122

Tree #3

200

Prediction:
(101+122+200) / 3

141



Hyperparameter Tuning & Results
Hyperparameter Search: 

• n_estimators ∈ {2,5,10,20,50,100,150,200} •  to  in steps of 2max_depth ∈ 2 10

1 2

Best Results:

2
n_estimators = 150 
max_depth = 6 : 292.9

3

1
n_estimators = 50 
max_depth = 6 : 292.2

3
n_estimators = 100 
max_depth = 6 : 293.8

Overfitting

Underfitting

Optimal



Animations of Traffic Predictions

Underfitting 
n_estimators = 2 
max_depth = 1

Optimal  
n_estimators = 50 
max_depth = 6

Overfitting 
n_estimators = 1 
max_depth = 20
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Overview of Neural Network Algorithm
Training: 

• Network parameters (weights & biases) are 
optimized via backpropagation 

Testing: 

• The road segment feature is fed through the 
network to produce a 24-hour volume prediction 

Regularization methods: 

• Early stopping: stop when test error begins to rise 

Hyperparameters: 

• Learning rate: scale for weight update 

• # of hidden layers: how deep the network is

Linear: 32 × 30

Linear: 30 × 26

Linear: 26 × 24

Input: Size 32

Output: Size 24

ReLU

ReLU



Overview of Neural Network Algorithm
Hyperparameters: 

• Learning rate: scale for weight update 

• # of hidden layers: how deep the network is 

Implementation: 

• Pytorch nn.Module with structure shown: 

• MAE loss 

• Adam optimization 

• Batch size of 32 

• Early stopping – 5 iterations without new 
best test loss

32 24
 32 (1 −

i
h + 1 )

+24 ( i
h + 1 )

Input Layer

Output Layer
Hidden Layer i

 = # of hidden layersh



Hyperparameter Tuning & Results
Hyperparameter Search: 

• lr ∈ {10−5,  2 × 10−5,  5 × 10−5,  10−4} • hidden_layers ∈ {0, 1, 2, 5, 10, 15, 20}

Best Results:

2 : 290.3

2

1
hidden_layers = 5  
lr = 5e-5 : 289.7

3 : 290.6

31

Optimal

Underfitting

hidden_layers = 2  
lr = 1e-4

hidden_layers = 5  
lr = 2e-5



Animations of Traffic Predictions

Underfitting 
hidden_layers = 0 
lr = 1e-5

Optimal 
hidden_layers = 5 
lr = 5e-5

Overfitting 
hidden_layers = 10 
lr = 1e-4

*no early stopping
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Comparing the Best Models

K-Nearest 
Neighbors Decision Tree Random 

Forest
Neural 

Network

Test error 
(mean ± std.) 309.0 ± 56.6 305.5 ± 69.0 292.2 ± 37.5 289.7 ± 48.7

Train time 0s 916ms 301ms 8.27s

Test time 295s 1.29s 1.92s 1.29s
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Questions We Look to Address
Model Trustworthiness: In this project, we fit models on a dataset of 310 road segments, but 
make predictions with these models for 9000+ unforeseen road segments. How reliable are 
these predictions? How do we know? 

Model Performance: We received generally similar results for each algorithm. What do these 
results mean? Can we really quantify “performance” with one metric? How does this affect the 
way models learn in our project? 

Project Improvements: How could we improve the outcome of the project? Should we go 
about the collection of data differently? With better data, should we keep the algorithms we 
use, or expand our consideration? 

Project Merits: We covered a lot of content in this project. What are the biggest takeaways? If 
appropriately refined, how could the deliverables of this project serve use to the public?
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Model Trustworthiness
• An underlying assumption in supervised learning is that the training features and testing 

features are independent and identically distributed. 

• Consider the feature vector as a 36-dimension random variable: , 

where  is a random variable of the th dimension. If  is the feature-generating distribution 

of road segments with stations (our training features), and  is the feature-generating 
distribution of all road segments in the network, then we’d like for  and  to be as similar 
as possible. 

• A common measurement of distribution similarity is the KL Divergence [X]:

, where  is the ground-truth distribution and  is the 

estimated distribution.

F := (X1, X2, X3, …, X36)
Xi i QF

PF
QF PF

DKL(P∥Q) =
n

∑
i=1

P[i] × log ( P[i]
Q[i] ) P Q



Model Trustworthiness
Partition of the feature distribution:

Index Attribute Bins

0 GPS Coor. Cluster 0: {0}, 1: {1}, 2: {2}, 3: {3}, 4: {4}

1 Road Length 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

2 Speed Limit 0: {Missing}, 1: [0,25), 2: {25}, 3: (25, ∞)

3 # of Lanes 0: {Missing}, 1: {1,2}, 2: {3,4}, 3: [5,∞)

4 Direction 0: {NE}, 1: [NW), 2: {SE}, 3: (SW)

5 Betweenness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

6 Closeness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

7 Total Degrees 0: {1,2,3}, 1: {4,5}, 2: [6, ∞)

Distribution Examples:



Model Trustworthiness
Partition of the feature distribution:

Index Attribute Bins

0 GPS Coor. Cluster 0: {0}, 1: {1}, 2: {2}, 3: {3}, 4: {4}

1 Road Length 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

2 Speed Limit 0: {Missing}, 1: [0,25), 2: {25}, 3: (25, ∞)

3 # of Lanes 0: {Missing}, 1: {1,2}, 2: {3,4}, 3: [5,∞)

4 Direction 0: {NE}, 1: [NW), 2: {SE}, 3: (SW)

5 Betweenness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

6 Closeness 0: (–∞, μ – σ), 1: [μ – σ, μ + σ], 2: (μ + σ, ∞)

7 Total Degrees 0: {1,2,3}, 1: {4,5}, 2: [6, ∞)

Bins via cartesian product:

: 0, 0, 0, 0, 0, 0, 0, 0B1

: 0, 0, 0, 0, 0, 0, 0, 1B2

: 0, 0, 0, 0, 0, 0, 0, 2B3

: 4, 2, 3, 3, 3, 2, 2, 2B∼25k

⋮

Total: ~25,000



Model Trustworthiness
We will use  and  to approximate  and , respectively. 

Sample space of : 

• the road segment belongs to Bin 1 

• the road segment belongs to Bin 2, and so on… 

We can easily compute  and  since  is discrete. 

Our assumption: 

QB PB QF PF

B

B1 =

B2 =

QB PB B

QB ≈ PB ⟷ QF ≈ PF

Bins via cartesian product:

: 0, 0, 0, 0, 0, 0, 0, 0B1

: 0, 0, 0, 0, 0, 0, 0, 1B2

: 0, 0, 0, 0, 0, 0, 0, 2B3

: 4, 2, 3, 3, 3, 2, 2, 2B∼25k

⋮

Total: ~25,000



Model Trustworthiness
Hypothesis Test: Is there evidence to suggest that the train 
examples (road segments with stations) are not drawn from 

, the ground-truth road segment distribution? 

Null hypothesis: The train examples were sampled from  

Alternate hypothesis: The train examples were sampled from 
a different distribution. 

Significance level:  

Approach: Draw 10,000 samples of size 310 from , and for 

each sample, compute , where  is the 

sample distribution over . Plot a histogram of the results.

PB

PB

α = 0.05

PB

DKL (PB ∥  ̂PB) ̂PB

B



Model Trustworthiness
Assume that the training examples were sampled from .   
If  is the sample distribution, then with 95%  ( ) 
confidence, we would expect  to be less than 

the upper bound .  

Test statistic:  

Conclusion: Since  is not less than the 95% upper 
bound, then we reject the null hypothesis and claim that 
there exists sufficient evidence to suggest that the training 
examples were not drawn from the ground-truth road 
segment distribution. 

Bigger picture: the train & test distributions are different 
enough to raise concern for our model’s ability to generalize.

PB
QB 1 − α

DKL (PB ∥ QB)
2.76

DKL (PB ∥ QB) = 2.85

2.85
P-value = 0.0218
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Model Performance
A Neural Network with 5 hidden layers and  
learning rate achieves a test loss of  

What does this value mean? 

• On average, the model’s hourly traffic volume 
prediction is off from the ground truth by 272.9 

• Every minute, the model’s volume count is only 
4.55 vehicles off. 

Is "mean MAE” a good performance metric? 

• Very sensitive to outliers 

• Must keep in mind full MAE distribution 

• Sometimes, a necessary evil for deep learning

5 × 10−5

272.9

25% 50% 75%

Per hour 67.6 166.0 332.0

Per minute 1.13 2.77 5.53
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Improving Dataset Collection
My suggestions: 

1. Target-side modifications 

• Add more stations if possible (500? 1k?) 

✓ Better for deep learning models 

• Sample road segments from  

✓ Identical train & test distributions 

2. Feature-side modifications 

• Add more information about each road segment’s 
surroundings (e.g. residence, work, population) 

✓ More for the model to learn on 

PB

Rendering of map with 
NetworkX: 500 stations 
drawn from  are redPB
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Project Merits
• In 2017, NYSDOT purchased traffic stations for 

roughly $800 each [X] 

• Stations for 310 road segments would cost 
~$248,000 

• Stations for all road segments would cost     
~$7.7 million 

• Counting each road segment by machine would 
give the best results, but is ~30x more expensive 

• Thus, realistic & accurate ML traffic volume 
generation would economically serve great use 
to state DOTs  

 Arizona DOT [X] 

 Wisconsin DOT [X] 



References
[1] https://www.dot.ny.gov/tdv 

[2] https://www.openstreetmap.org/ 

[3] https://www.kaggle.com/code/usui113yst/basic-network-analysis-tutorial 

[4] https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html 

[5] https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.DiGraph.in_degree.html 

[6] https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.DiGraph.out_degree.html 

[7] https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html 

[8] https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html 

[9] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://www.dot.ny.gov/tdv
https://www.openstreetmap.org/
https://www.kaggle.com/code/usui113yst/basic-network-analysis-tutorial
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.in_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.in_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.in_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.out_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.out_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.DiGraph.out_degree.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html
https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

