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 Brief introduction



My SURI Experience

Brief Introduction

* Hello, I’'m Kyle Otstot!
* Incoming 3rd year CS & Math major at ASU
* Interned under Dr. Lalitha Sankar this summer

e Worked with John Cava

* Supervised by Lalitha Sankar, Chaowei Xiao, and Tyler
Sypherd



Project Overview

Brief Introduction

* |n this project, we set out to
1. Introduce a classification setting applicable to real-world problems
* Argue that training and evaluating on corrupted datasets are inevitable obstacles

2. Propose a novel task that formulates a robust solution to the classification setting

3. Evaluate the performance of a-loss relative to some selected SoTA robust loss
function family in the context of this novel task
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* Image classification



Image Classification
Background

 Each image classification problem is defined by the following:

» Feature space X , Label space ¥
 “Ground-truth” mapping f: & — ¥
 Viexyey Y =/f(x) iffxisanimage of y
» Observable dataset Y C {(x,y) € XL X ¥ :y=f(x)}

. Classifierf: A — &, an estimate of f, given &



Image Classification
Background

Y
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Image Classification
Background

» Dataset Corruptions

e [abels

, Red panda , Dolphin

e Features

, Red panda —> , Red panda




Image Classification
Background

 Proposed remedies to corrupted datasets
e |abels
 Robust loss functions (NEXT)
* Features

 Data augmentation (AFTER)
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e Robust loss functions



Robust Loss Functions

Background
o/ o ¢
 General loss functionZ : X X % — R o ©o)le
o O °
 Maps an estimated probability distribution and true class ° O C C
label to a real number ® o)le
® \ o O @
» Standard loss function: Cross Entropy ° * 9 O °
O
A A o O
» Ccp(P,y) = —log P(y)

| Overfitting to noisy label set
* Fails to be robust to label noise



Robust Loss Functions
Background

* SOTA loss function family: NCE+RCE

‘ f—l—(ﬁayaaaﬁ) — - KNCE(p’y) +ﬁ KRCE(ﬁ’y)

« Will define £y and € later

 Shown to be robust to label noise (Ma, et al.)

Generalizing to true label set



Robust Loss Functions
Background

 Featured loss function family: a-loss

A a A |
Py = —— (1= ) ~+)
a— 1

 Shown to be robust to label noise when a > 1

e £, =Crp When a =1

Generalizing to true label set
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 Data augmentation



Data Augmentation
Background

» The general augmentor & : & — X" returns an n-tuple

and each x,

lean

(Xetean » Xaugl » Xaug2 s + -+ » Xaugn—1)) 9iven x € X, where x = x_

)isa

ug(i

unigue corruption of x.




Data Augmentation
Background

clean

Classifier ( f) — ﬁ

augl

aug(n—1




Data Augmentation
Background

» The use of augmentation warrants a loss supplement £, : " — R that regulates the output of

each feature in &/(x)

. An effective regularizer will ensure that P_;,,, ~ P which aims to improve the classifier [ ’s

aug(i) ’
robustness to corrupted features

» Training with augmentation makes use of the general loss function £

Va\

. L (Ptuplea )79/1) — fbase(Pclean’ y) + 4 f&i(Pclean’ Paugl’ A ’Paug(n—l))

* fbasee{fCE’ f+’ fa’ }



Data Augmentation
Background

 Examples of augmentation

« STANDARD: the case where n = 1. I ¢rp(x) simply returns x

o AUGMIX: a SoTA example of n = 3. (Hendrycks, et al.)

S M cqualize Lfe




Data Augmentation
Background

 Examples of augmentation regularizers

» Jensen-Shannon Divergence Consistency Loss (£ )

R 1 /4 R R
. Pmixzz(Pclean+Paug1+"°+Paug(n—1) )

n | n n n n n n
° KJS(Ptuple) — ; (KL(PcleanHPmix) T KL(PaugIHPmix) T T KL(Paug(n—l)HPmix))

» Note that £ ;¢ = 0 with standard augmentation



 Empirical investigation

e Motivation



Motivation

Empirical Investigation

* We place ourselves in the following real-world classification setting:

1. Our classifier fA 's architecture is state-of-the-art but fixed
2. Our train & test sets are generated from some sufficiently large dataset &

3. The train set labels are corrupted at some unknown rate 0 < r < 0.5

4. The test set features undergo a series of common corruptions



Motivation

Empirical Investigation

* We propose the following set of tasks that formulate a robust solution:

1. Train with state-of-the-art data augmentation &/

2. Train with loss function & =¢, ,+ A-¢ for some base loss ¢, , positive scalar 4 ,

and augmentation regularizer £

3. Choose 4 and ¢, to optimize performance of &/

4. Tune a robust loss function family to optimize performance at some reasonable (& fixed)
label noise rate 1, > 0, and assign the result to £, .,



Motivation

Empirical Investigation

* We construct an investigation that
* Assumes the classification setting outlined previously

 Establishes a baseline metric
e [rain with er .= ‘Q[STD and fbase = KCE
» Sets (A, A,C ) .= (A s 12, €;¢) for state-of-the-art data augmentation

» Reduces our task to the selection of £,



Motivation

Empirical Investigation

* Our investigation seeks to answer the following questions

» Does the optimality of £ ., (w.r.t. test performance) depend on the choice of &/?

* |In our proposed classification setting, how does a-loss compare to NCE+RCE w.r.t.
performance In

* Hyperparameter tuning efficiency?

* Evaluation on common corruptions?



 Empirical investigation

e Setting (control & variable)



Setting (control)

Empirical Investigation Cosine Annealing Schedule
0.10 -
o Classifier ( f ) architecture
0.08 -
 SOTA Model: WideResNet-40-2
5
* Optimizer: SGD g 006+
© Nmax
= Nmin
« Nesterov momentum (y): 0.9 =
= 0.04 -
A e
» Weight decay (4,,) : 5 X 10~
0.02 -
e Learning rate scheduler: Cosine Annealing
e Initial learning rate (77,,,,,,.) : 0.1 0.00 -
_ _ _6 6 50100 10(;00 15(')00 20(')00 25(')00 30(;00 35(;00 40(500
» Final learning rate (7,,,;,, ) : 10 step (1)

« Number of epochs: 100



Setting (variable)

Empirical Investigation

» Dataset (Y)

 CIFAR-10

e Classes: 10

» Train-test: 50,000 / 10,000

» Batch-size: 128
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Setting (variable)

Empirical Investigation

» Dataset (9)

* CIFAR-100

e Classes: 100

» Superclasses: 20

» Train-test: 50,000 / 10,000

» Batch-size: 128

Superclass

aquatic mammals

fish

flowers

food containers

fruit and vegetables
household electrical devices
household furniture

insects

large carnivores

large man-made outdoor things
large natural outdoor scenes
large omnivores and herbivores
medium-sized mammals
non-insect invertebrates
people

reptiles

small mammals

trees

vehicles 1

vehicles 2

Classes

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout
orchids, poppies, roses, sunflowers, tulips
bottles, bowls, cans, cups, plates

apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach
bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snail, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle
hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train
lawn-mower, rocket, streetcar, tank, tractor



Setting (variable)

Fox

- = - - /-\A
Empirical Investigation Cow
Red panda) Bear

“~— | Dolphin

* |Label noise generation (train set)

Symmetric noise labeling

» Noiserater € {0.0%, 0.1,0.2,0.3,04}

e Methods

o Symmetric: Each label with probability 7 is flipped; the other labels are equally likely to be
chosen as the new one

 Asymmetric: Each label with probabillity 7 is flipped; labels with similar classes are more
likely to be chosen as the new one

* Baseline metric



Setting (variable)

Empirical Investigation

* Label noise generation (train set)

 Asymmetric mappings

CIFAR-10 CIFAR-100
 Symmetric mapping within each superclass
Frog
Truck Automobile m
Bird
Deer Airplane Maple Oak
Horse Palm Pine
Cat Dog
Willow
Ship




Setting (variable)

Empirical Investigation

* Feature noise generation (test set)

e Clean™: simply test on original set

* Corruption: test on 15 sets, each generated by a
different common corruption; report the mean

error

errors = [ ]

for corruption & corruptions do:
corrupt_set = corruption(test_set)
test_error = test(corrupt_set)
errors.add(test_error)

return mean(errors)
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* Baseline metric



Setting (variable)

Empirical Investigation

* Data augmentation

s de{Ysrp” s davemix!

o 9 ¢rp : ldentity augmentor; x > x

° ‘Q[AUGMIX » Augmix; x > (xclecm’ Xaug1 xaug2)

e Base loss function
* fbase S {KCE* ’ f+ ’ fa}

e General loss function & = ¢, + A€, where A = 12

* Baseline metric



* Hyperparameter tuning

 Empirical investigation



Hyperparameter Tuning

Empirical Investigation

Broad Search Heatmap

1.00
0.8 -
 The a-loss family is parameterized by a € R™ 0o %93
| 0.90
» Tuning algorithm for each setting combination with r, = 0.2: 1.0 - 8
1. Run broad search 1.2 - 0.80
S
=3 - 0.75
I, =1{0.8,0.9,1.0,1.2,1.5,2,3,4,6}
2.0 - 0.70
2. Set & run narrowed search
3.0 - 0.65
» accuracy(lly) consistently unimodal; center 11, around peak 20 - 0.60

3. Select ™ = arg max {accumcy (f a(a)) }

a€lly



Hyperparameter Tuning

Empirical Investigation

« The NCE+RCE family is parameterized by («, f) € RT x R™

a
If weletk := a+ fand c := , then we can rewrite £ to be

a+p

o £y =k(c Eycpt+(1=0) Cpep)

« Now we have two parameters k, ¢ that intuitively denote the scale of £ + and ratio between

£ vep and € pop , respectively

« Then we search for (k*, ¢*) and solve (a*, [*) = (k*c*, k*(1 — c*))



Hyperparameter Tuning

Empirical Investigation

« The NCE+RCE family is parameterized by («, f) € RT x R™

» Tuning algorithm for each setting combination with r, = 0.2:

1. Run broad search

{0.5,1,2,5,10} x {0.8,0.9,0.99,0.999} D crrar—io A L orp
_— {20,40,60,80,100,120} x {0.8,0.9,0.99,0.999,0.9999} D crrar—100 A s
% 11{05,1,2,5,10} x {0.6,0.7,0.8,0.9,0.99,0.999} D cirar—10 A L avcaix

120,40,60,30,100,120} x {0.5,0.7,0.8,0.9,0.99,0.999,0.9999} D ~1r4r_100 A L svcrix



Hyperparameter Tuning

Empirical Investigation

« The NCE+RCE family is parameterized by (a, f) € RT x RT

» Tuning algorithm for each setting combination with ry = 0.2:

e 2. Set & run narrowed search

» accuracy(lly) can be unimodal, bimodal, or multimodal

 Construct a space H](\",) centered around each peak r;

. Then Tl = | J1I{)
l

. 3. Select (k*, c*) = arg max {accumcy (zf L (k, c)) }
(k,c)elly

0.6

Broad Search Heatmap
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* Results summary

 Empirical investigation



Empirical Investigation

Results Summary

Noise
Task Dataset Loss Parameter
0 0.1 0.2 0.3 0.4

CE — 27.06 £ 0.27 3571 £054 3994 +097 4494 +092 51.65 +0.32
CIFARI0 a-loss 3 2842 +035 2933 +0.73 3098 +£0.15 3254 £ 0.64 3487 = 1.57
, NCE+RCE (0.6,0.99) 30.1 £ 0.22 30.1 £ 0.22 30.61 £ 0.36 32.63 = (0.28 349 + 0.52

Standard Symmetric
CE — 53.6 £ 0.2 59.69 + 0.31 64.49 + 0.22 68.5 + 0.27 72.6 = 0.17
CIFARI100 a-loss 2 54.29 + 0.1 5544 = 0.23 56.72 034 5785033 6038 +0.26
NCE+RCE (80,0.99) 5566 £ 042 5659 +£0.17 55.65 + 1.83 57.65 £ 1.9 57.37 = 1.62
CE — 26.71 £ 041 2987 049 3261 = 0.21 34771 £ 0.87 3847 +0.24
CIFARI10 a-loss 2.5 2776 £ 0.56 2842 £ 0.57 3065 022 3327 +0.72 3928 + 0.46
, NCE+RCE (5,0.995) 2858 £ 092 2898 +0.33 30.11 +£1.28 32.61 = 041 37.8 + 0.89

Standard Asymmetric
CE — 53.74 = 0.04 58.9 + 0.25 62.89 + 0.27 6603 050 6996 =+ 0.28
CIFARI00 a-loss 3 5439 £ 002 5555030 5767026 5978062 6292+ 0.36
NCE+RCE | (110,0999) | 5444 + 0.18 5585 +0.13 5693 £ 0.16 59.21 =+ 0.61 61.65 = 0.17

TABLE 1. MEAN CORRUPTION ERROR GIVEN VARYING TASKS WHEN MODEL TUNED TO MINIMIZE MCE.



Empirical Investigation

Results Summary

Noise
Task Dataset Loss Parameter
0 0.1 0.2 0.3 0.4

CE — 11.2 + 0.07 12.86 = 0.07 14.81 + 0.23 17.47 = 0.25 21.29 + 0.25

CIFARI10 a-loss 2 11.29 + 0.33 11.79 £ 0.21 1236 £ 0.07 1295 %+ 0.17 14.09 = 0.26

, , NCE+RCE (1,0.8) 12.21 £ 0.09 12.36 £ 0.16 12.58 = 0.06 13.14 £ 0.12 14.09 = 0.25
Augmix Symmetric

CE — 35.83 £ 0.15 38.76 £ 0.18 41.26 £ 0.12 4395 = 0.11 47.69 + 0.21

CIFAR100 a-loss 1.3 3574 £ 0.15 3658 £ 008 3756 +£0.13 3973 +£0.13 4194 = 0.08

NCE+RCE (50,0.99) 38.08 £ 0.09 38.15 = 0.08 39.00 + 0.12 40.7 = 0.05 42.75 + 0.29

CE — 11.24 = 0.16 11.9 = 0.04 12.77 = 0.06 14.12 = 0.02 16.77 = 0.29

CIFARI10 a-loss 1.7 1145 £ 0.1 11.75 £ 0.14 1234 =+ 0.26 13.65 = 0.32 16.1 = 0.05

, _ NCE+RCE (1,0.7) 12.53 + 0.45 12.61 = 0.22 12.78 + 0.43 13.74 £ 0.27 2593 + 1.45
Augmix Asymmeltric

CE — 35.72 £ 0.14 38.3 +0.34 40.29 = 0.11 4233 + 033 4468 + 0.21

CIFARI100 a-loss 1.5 36.09 £ 0.12 37.19 = 0.16 38.43 + 0.1 40.19 + 0.34 41.37 = 0.11

NCE+RCE (50,0.99) 38.04 £0.19 3895+024 3997 +0.27 4142 = 0.31 43.61 + 0.02

TABLE 1. MEAN CORRUPTION ERROR GIVEN VARYING TASKS WHEN MODEL TUNED TO MINIMIZE MCE.



Results Summary

Empirical Investigation

BASELINE: o ¢, + £ -1

Loss | CIFAR-10 | CIFAR-100
Symmetric | CE 43.06 66.32
Asymmetric | CE 33.92 64.45




* Both a-loss and NCE+RCE significantly

RGSUltS Summary outperform CE

* a-loss is competitive with NCE+RCE

Empirical Investigation . NCE+RGE shows to be SOTA

BASELINE: o ¢, + £ -1

Loss | CIFAR-10 | CIFAR-100

Symmetric | CE 43.06 66.32
Asymmetric | CE 33.92 64.45
e |®
Loss CIFAR-10 | CIFAR-100
Symmetric a-loss 31.88 57.60
NCE+RCE 32.06 56.82
| a-loss 33.16 58.98
Asymmetric
NCE+RCE 32.38 58.41




 SOTA data augmentation drastically
improves performance on corrupted test
features even when the base loss is not

robust to label noise

Results Summary

Empirical Investigation

BASELINE: o ¢, + £ -1

Loss | CIFAR-10 | CIFAR-100 + of Loss | CIFAR-10 | CIFAR-100
AUGMIX
Symmetric | CE 43.06 66.32 - | Symmetric | CE 16.61 42.92
Asymmetric | CE 33.92 64.45 @ Asymmetric | CE 13.89 41.4
e | @
Loss CIFAR-10 | CIFAR-100
Symmetric a-loss 31.88 57.60
NCE+RCE 32.06 56.82
| a-loss 33.16 58.98
Asymmetric
NCE+RCE 32.38 58.41




Results Summary

Empirical Investigation

BASELINE: o ¢, + £ -1

Loss | CIFAR-10 | CIFAR-100 + of Loss | CIFAR-10 | CIFAR-100
AUGMIX
Symmetric | CE 43.06 66.32 - | Symmetric | CE 16.61 42.92
Asymmetric | CE 33.92 64.45 @ Asymmetric | CE 13.89 41.4
vl 0, @ vl 0,
Loss CIFAR-10 | CIFAR-100 @ Loss CIFAR-10 | CIFAR-100
Symmetric a-loss 31.88 57.60 + ey Symmetric a-loss 12.80 38.95
NCE+RCE 32.06 56.82 NCE+RCE 13.04 40.17
—
| a-loss 33.16 58.98 | a-loss 13.46 39.30
Asymmetric Asymmetric
NCE+RCE 32.38 58.41 NCE+RCE 16.27 40.99

* |n our designed task, a-loss slightly but
consistently outperforms NCE+RCE

* This task produces the best overall results

for our designed setting




e Discussion

e Estimated distribution metrics



Discussion

Y

, Red panda) — Classifier(f)

Estimated Distribution Metrics
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Estimated Distribution Metrics
Discussion

+ Metrics of P important to consider in the context of label
corruption:

» Estimated probability for the true class

N\ A\

« 1. =P(f(x)|x) =0.23

. Smaller values of 1 . should indicate a greater
likelihood of a label flip

 “Red panda” is a false-positive class

0.05

Fox
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Red panda
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Dolphin
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Estimated Distribution Metrics
Discussion

+ Metrics of P important to consider in the context of label
corruption:

* Highest estimated probability of the false classes

. 0, = max{P(k|x): f(x) # k€ ¥}
= 0.45

 Larger values of (A)x should indicate a greater
likelihood of a label flip

* “Fox” is a false-negative class
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0.05
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Estimated Distribution Metrics
Discussion

* A classifier f trained on set 1 with label noise rate r and

perfectly robust £, ., must contain the following properties:

Let 2 denote the set of features in 7. Then

Vo

1. 1, = Ofor 100(r)% of x € X

A\

2. 1.~ 1for100(1 —r)% ofx € X' ;

Va\

3. 0, = O0for 100(1 =% ofx € X ;

Va\

4. 0, =~ 1 for 100(r)% of x € X ;

Il —r
r
1. distribution
1 —r

A

0 0, distribution



* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation

Estimated Distribution Metrics
Discussion

» The following example* confirms that £ - is robust to r = 0.0

L0 == er e s e e e e I e e
0.8 . 0.8 A .
Accuracy vs. Time Accuracy vs. Time

1.00 1.00

0.75 0.75
0.6 - 0.6 -

0.50 - 0.50 -

0.25 - 0.25 -
041 0.00 . . . il 0.00 . . .

0 25 50 75 100 0 25 50 75 100
0.2 - 0.2 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0



* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation

Estimated Distribution Metrics
Discussion

 However, this example* illustrates that £~ is not robust to r = 0.3

0.8 0.8
0.7 - 0.7 -
0.6 - 0.6 -
Accuracy vs. Time Accuracy vs. Time

1.00 1.00
0.5 - 0.5

0.75 1 0.75 -
0.4 - 0.50 - 0.4 - 0.50 -

0.25 - 0.25 -
0.3 - 0.3 -

0.00 T T T 0.00 T T .

0 25 50 75 100 0 25 50 75 100
0.2 - 0.2 -
0.1 - I|II 0.1 - |||II
0.0 | 1 | | | 0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

ix 6X



* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation

Estimated Distribution Metrics
Discussion

» This example* illustrates that £, with (k, ¢) = (2,0.99) is robust to r = 0.3

0.8 0.8
0.7 - 0.7 -
0.6 - 0.6 -
Accuracy vs. Time Accuracy vs. Time

1.00 1.00
0.5 - 0.5 -

0.75 1 0.75 -
0.4 - 0.50 -

0.25 -
0.3 -

0.00 . . ,

0 25 50 75 100

0.2 -
0.1 -
0.0 -

0.0 0.2 0.4 0.6 0.8 1.0 1.0



* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation

Estimated Distribution Metrics
Discussion

» Likewise, this example* illustrates that £, with @ = 3.5 is robust to r = (.3

0.8 0.8
0.7 - 0.7 -
0.6 - 0.6 -
Accuracy vs. Time Accuracy vs. Time

1.00 1.00
0.5 - 0.5 -

0.75 1 0.75 -
0.4 - 0.50 A 0.4 - 0.50 A

0.25 1 0.25 A
0.3 - 0.3 -

0.00 . T T 0.00 T . T

0 25 50 75 100 0 25 50 75 100
0.2 - 0.2 -
0.1 - 0.1 -
0.0 - T T —r T 0.0 __.'_.III-III.II-I....‘-!-..-.-..-’M_ T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

ix 6X



e Discussion

 Backpropagation



Backpropagation
Discussion s 7 add sk S
0P(k))  0P(ky) OP(ks) oP(k,)
. At the top of the model, a:SZ is distributed
to each node }A’(ki) indicating how }A’(ki)
should change in order to minimize & oP (k ) 5
, (1,)) € [n]

* These partial derivatives ultimately

0L
contribute to the overall gradient W @ @ @ @

through the chain rule
0z;
oW



Backpropagation

Discussion

» If k, were to be a false-positive class

(false class flipped to a true class), then

we’d like for }A’(kz) to stay low

. lherefore d should be as high as

A

0P (k)

possible

ISA 0L 0& 0L
0P(k))  0P(ky) OP(ks) oP(k,)
(’)P(k)
, (i,)) € [n)*
0Z;

— . i€ n
oW &



Backpropagation

Discussion P

» Suppose (x,y) € &Y and f(x) = P . Then

3ty | aP(y)

A (1 A 1_l
Py = —— (1= () )
a—1

afa N a _1
. (Payaa):_P(y) ’ _6

0P(y) oo o2 o4 0o

P(y)

or,
" 0P(y)
likely event ( 1

for @ > 1 purposely hinders the growth of ix = IA’(y) when y is a lesser-

Va\

. — 0) and therefore more likely to be a false-positive class



Backpropagation

Discussion

» Now, if k3 were to be a false-negative

class (true class flipped to a false class),

then we’d like for P(k) to stay high

0<
. Therefore should be as low as

A\

0P (k3)

possible

ISA 0L 0L
0P(k))  0P(ky) oP(k,)
(’)P(k)
, (i,)) € [n)*
0Z;

— . i€ n
W [n]



Backpropagation

Discussion

» Suppose (x,y) € D, f(x) = P, and let ky € ¥ be the most likely false class. Then

5\ log P(y) B log P(y)
Z’ﬂNCE(Pa y) — A - A A
. Y logP(k) logP(ky) + ) logP(k)
key k#k

. 4 RCE(IA’, y)=A Z }A’(k) =A - }A’(ko) + A Z }A’(k) ,where A € R™ is some constant
k#y k#y,kg

e Recall that L”+(13,y; a, ) =a- L”NCE(f’, y)+ ) b”RCE(fA), ),
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. If we fix P(k) for all k # kg , then

log P(y)

log P(ky) + Y log P(k)
kit

L”Jr(f’,y;a,ﬁ) = Q-

+p

lOg f) (ko) + C2

- C; - P(ky) + C,

for some constants C,,C, € R™, C;,C, € R

-[

A - Pky) + A 2 Pk
k#yakO

|



Case whereC1= —-1,Cr=—-3,C3=1

Backpropagation

Discussion

3l | aP(ko)

» Then the partial derivative of £, w.r.t. }A’(ko) iS

1\

or, . C, .
aﬁk (P9y9aaﬁ): 2 C3
(ko) X <log P(ky) + Cz) N | | | |
| | aE |
az/ﬂ+ : : : : : ~ - _
P is a decreasing function, which hinders the decay of 0, = P(k;) when k; is a
Pk

Va\

more-likely event (0. — 1) and therefore more likely to be a false-negative class

X



Backpropagation
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e To summarize:

1. The a-loss family is robust to label corruption because ¢, restrains the
growth of probabilities for potential false-positive classes

2. The NCE+RCE family is robust to label corruption because ¢, restrains
the decay of probabilities for potential false-negative classes



 Takeaways



Takeaways

* a-l0Ss requires a much-less involved optimal hyperparameter search than that of its SoTA loss
function family counterpart, NCE+RCE

* When training on corrupted labels, a-loss is competitive with NCE+RCE

 When evaluating on corrupted features, data augmentation is essential for optimal performance

* \When training on corrupted labels AND evaluating on corrupted features, a-loss appears to
slightly (but consistently) outperform NCE+RCE

» The optimality of £ ., (w.r.t. test performance) does indeed depend on the choice of &f



* Next step



Next Step

e Give more consideration into why a-loss

appears to consistently outperform NCE+RCE
In our desighed setting

Clean set (train + test)

* Potential explanation:

* Although both families succeed at learning
the clean train set, NCE+RCE slightly
overfits on the clean-augmented hybrid

Augmented set
Corrupted set

distribution while a-loss generalizes to the

overall distribution
NCE+RCE a-loss



e Q&A









