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My SURI Experience
Brief Introduction

• Hello, I’m Kyle Otstot!


• Incoming 3rd year CS & Math major at ASU


• Interned under Dr. Lalitha Sankar this summer


• Worked with John Cava


• Supervised by Lalitha Sankar, Chaowei Xiao, and Tyler 
Sypherd



Project Overview
Brief Introduction

• In this project, we set out to 


1. Introduce a classification setting applicable to real-world problems


• Argue that training and evaluating on corrupted datasets are inevitable obstacles


2. Propose a novel task that formulates a robust solution to the classification setting


3. Evaluate the performance of -loss relative to some selected SoTA robust loss 
function family in the context of this novel task

α
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Image Classification
Background

• Each image classification problem is defined by the following:


• Feature space  , Label space  


• “Ground-truth” mapping   


•      iff  is an image of 


• Observable dataset 


• Classifier  , an estimate of  , given 

𝒳 𝒴

f : 𝒳 → 𝒴

∀x∈𝒳,y∈𝒴 y = f(x) x y

𝒟 ⊂ {(x, y) ∈ 𝒳 × 𝒴 : y = f(x)}

̂f : 𝒳 → 𝒫 f 𝒟



Image Classification
Background

Classifier (  )̂f, Red panda )(

0.45 Fox 0

0.02 Cow 0

0.23 Red panda 1

0.25 Bear 0

0.05 Dolphin 0

̂P P

𝒴

∈ 𝒟

x
y



Image Classification
Background

(                    , Red panda )

• Dataset Corruptions


• Labels


• Features

(                    , Dolphin )

(                    , Red panda ) (                    , Red panda )



Image Classification
Background

• Proposed remedies to corrupted datasets


• Labels


• Robust loss functions (NEXT)


• Features


• Data augmentation (AFTER)
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Robust Loss Functions
Background

• General loss function 


• Maps an estimated probability distribution and true class 
label to a real number


• Standard loss function: Cross Entropy


• 


• Fails to be robust to label noise

ℓ : 𝒫 × 𝒴 → ℝ

ℓCE( ̂P, y) = − log ̂P(y)
Overfitting to noisy label set



Robust Loss Functions
Background

• SoTA loss function family: NCE+RCE


• 


• Will define  and  later


• Shown to be robust to label noise (Ma, et al.)

ℓ+( ̂P, y; α, β) = α ⋅ ℓNCE( ̂P, y) + β ⋅ ℓRCE( ̂P, y)

ℓNCE ℓRCE

Generalizing to true label set



Robust Loss Functions
Background

• Featured loss function family: -loss


• 


• Shown to be robust to label noise when 


•   when  

α

ℓα( ̂P, y; α) =
α

α − 1 (1 − ̂P(y)1− 1
α )

α > 1

ℓα = ℓCE α = 1
Generalizing to true label set
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Data Augmentation
Background

• The general augmentor  returns an -tuple
 given , where  and each  is a 

unique corruption of .

𝒜 : 𝒳 → 𝒳n n
(xclean ,  xaug1 ,  xaug2 ,   . . .  ,  xaug(n−1)) x ∈ 𝒳 x = xclean xaug(i)

x

𝒜
(                  ,                  ,  ….  ,                 )

x xclean xaug1 xaug(n−1)



Data Augmentation
Background

…

Classifier (  )̂f

̂Pclean

̂Paug1

̂Paug(n−1)

…

𝒜(x){



Data Augmentation
Background

• The use of augmentation warrants a loss supplement  that regulates the output of 
each feature in 


• An effective regularizer will ensure that  , which aims to improve the classifier  ’s 
robustness to corrupted features


• Training with augmentation makes use of the general loss function :


• 


•

ℓ𝒜 : 𝒫n → ℝ
𝒜(x)

̂Pclean ≈ ̂Paug(i)
̂f

ℒ

ℒ ( ̂Ptuple, y; λ) = ℓbase( ̂Pclean, y) + λ ⋅ ℓ𝒜( ̂Pclean, ̂Paug1, . . . , ̂Paug(n−1))

ℓbase ∈ {ℓCE ,  ℓ+ ,  ℓα ,   . . . }



Data Augmentation
Background

• Examples of augmentation


• STANDARD: the case where .  simply returns 


• AUGMIX: a SoTA example of . (Hendrycks, et al.)

n = 1 𝒜STD(x) x

n = 3



Data Augmentation
Background

• Examples of augmentation regularizers


• Jensen-Shannon Divergence Consistency Loss (  )


• 


• 


• Note that  with standard augmentation

ℓJS

̂Pmix =
1
n ( ̂Pclean + ̂Paug1 + . . . + ̂Paug(n−1) )

ℓJS( ̂Ptuple) =
1
n (KL( ̂Pclean∥ ̂Pmix) + KL( ̂Paug1∥ ̂Pmix) + . . . + KL( ̂Paug(n−1)∥ ̂Pmix))

ℓJS = 0
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Motivation
Empirical Investigation

• We place ourselves in the following real-world classification setting:


1. Our classifier  ’s architecture is state-of-the-art but fixed


2. Our train & test sets are generated from some sufficiently large dataset 


3. The train set labels are corrupted at some unknown rate 


4. The test set features undergo a series of common corruptions

̂f

𝒟

0 < r < 0.5



Motivation
Empirical Investigation

• We propose the following set of tasks that formulate a robust solution:


1. Train with state-of-the-art data augmentation 


2. Train with loss function    for some base loss  , positive scalar  , 
and augmentation regularizer  


3. Choose   and  to optimize performance of 


4. Tune a robust loss function family to optimize performance at some reasonable (& fixed) 
label noise rate , and assign the result to 

𝒜

ℒ = ℓbase + λ ⋅ ℓ𝒜 ℓbase λ
ℓ𝒜

λ ℓ𝒜 𝒜

r0 > 0 ℓbase



Motivation
Empirical Investigation

• We construct an investigation that


• Assumes the classification setting outlined previously


• Establishes a baseline metric


• Train with  and 


• Sets  for state-of-the-art data augmentation


• Reduces our task to the selection of  

𝒜 := 𝒜STD ℓbase := ℓCE

(𝒜, λ, ℓ𝒜) := (𝒜AUGMIX,  12, ℓJS)

ℓbase



• Our investigation seeks to answer the following questions


• Does the optimality of  (w.r.t. test performance) depend on the choice of ?


• In our proposed classification setting, how does -loss compare to NCE+RCE w.r.t. 
performance in


• Hyperparameter tuning efficiency?


• Evaluation on common corruptions?

ℓbase 𝒜

α

Motivation
Empirical Investigation
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Setting (control)
Empirical Investigation

• Classifier (  ) architecture


• SoTA Model: WideResNet-40-2


• Optimizer: SGD


• Nesterov momentum (  ) : 


• Weight decay (  ) : 


• Learning rate scheduler: Cosine Annealing


• Initial learning rate (  ) : 


• Final learning rate (  ) : 


• Number of epochs: 

̂f

γ 0.9

λw 5 × 10−4

ηmax 0.1

ηmin 10−6

100



Setting (variable)
Empirical Investigation

• Dataset ( )


• CIFAR-10


• Classes: 


• Train-test:  / 


• Batch-size: 

𝒟

10

50,000 10,000

128



Setting (variable)
Empirical Investigation

• Dataset ( )


• CIFAR-100


• Classes: 


• Superclasses: 


• Train-test:  / 


• Batch-size: 

𝒟

100

20

50,000 10,000

128



Setting (variable)
Empirical Investigation

• Label noise generation (train set)


• Noise rate  


• Methods


• Symmetric: Each label with probability  is flipped; the other labels are equally likely to be 
chosen as the new one


• Asymmetric: Each label with probability  is flipped; labels with similar classes are more 
likely to be chosen as the new one

r ∈ {0.0 *,  0.1, 0.2, 0.3, 0.4}

r

r

(                 , Red panda )

Fox - 25%

Cow - 25%

Bear - 25%

Dolphin - 25%

Symmetric noise labeling

* Baseline metric



Setting (variable)
Empirical Investigation

• Label noise generation (train set)


• Asymmetric mappings

CIFAR-10 CIFAR-100

Truck Automobile

Bird
AirplaneDeer

Horse

Cat Dog

Frog

Ship

• Symmetric mapping within each superclass

Trees

Maple Oak

Palm Pine

Willow



Setting (variable)
Empirical Investigation

• Feature noise generation (test set)


• Clean*: simply test on original set


• Corruption: test on 15 sets, each generated by a 
different common corruption; report the mean 
error

errors = [ ]
for corruption  corruptions do:

corrupt_set = corruption(test_set)
test_error = test(corrupt_set)
errors.add(test_error)

return mean(errors)

∈

* Baseline metric



Setting (variable)
Empirical Investigation

• Data augmentation


• 


•  Identity augmentor; 


•  Augmix; 


• Base loss function


• 


• General loss function  , where 

𝒜 ∈ {𝒜STD * ,  𝒜AUGMIX}

𝒜STD : x ↦ x

𝒜AUGMIX : x ↦ (xclean,  xaug1,  xaug2)

ℓbase ∈ {ℓCE * ,  ℓ+ ,  ℓα}

ℒ = ℓbase + λ ⋅ ℓJS λ = 12
* Baseline metric



Agenda
• Brief introduction


• Background


• Image classification


• Robust loss functions


• Data augmentation


• Empirical investigation


• Motivation


• Setting (control & variable)

• Hyperparameter tuning


• Results summary


• Discussion


• Estimated distribution metrics


• Backpropagation


• Takeaways


• Next step


• Q&A



Hyperparameter Tuning
Empirical Investigation

• The -loss family is parameterized by 


• Tuning algorithm for each setting combination with :


1. Run broad search


• 


2. Set & run narrowed search


•  consistently unimodal; center  around peak


3. Select 

α α ∈ ℝ+

r0 = 0.2

ΠB = {0.8, 0.9, 1.0, 1.2, 1.5, 2, 3, 4, 6}

accuracy(ΠB) ΠN

α* = arg max
α∈ΠN

{accuracy (ℓa(α))}



Hyperparameter Tuning
Empirical Investigation

• The NCE+RCE family is parameterized by 


• If we let  and  , then we can rewrite  to be


• 


• Now we have two parameters  that intuitively denote the scale of  and ratio between 

 and  , respectively


• Then we search for  and solve 

(α, β) ∈ ℝ+ × ℝ+

k := α + β c :=
α

α + β
ℓ+

ℓ+ = k (c ⋅ ℓNCE + (1 − c) ⋅ ℓRCE)
k, c ℓ+

ℓNCE ℓRCE

(k*, c*) (α*, β*) = (k*c*, k*(1 − c*))



Hyperparameter Tuning
Empirical Investigation

• The NCE+RCE family is parameterized by 


• Tuning algorithm for each setting combination with :


1. Run broad search


•

(α, β) ∈ ℝ+ × ℝ+

r0 = 0.2

ΠB =

{0.5,1,2,5,10} × {0.8,0.9,0.99,0.999} 𝒟CIFAR−10 ∧ 𝒜STD

{20,40,60,80,100,120} × {0.8,0.9,0.99,0.999,0.9999} 𝒟CIFAR−100 ∧ 𝒜STD

{0.5,1,2,5,10} × {0.6,0.7,0.8,0.9,0.99,0.999} 𝒟CIFAR−10 ∧ 𝒜AUGMIX

{20,40,60,80,100,120} × {0.5,0.7,0.8,0.9,0.99,0.999,0.9999} 𝒟CIFAR−100 ∧ 𝒜AUGMIX



Hyperparameter Tuning
Empirical Investigation

• The NCE+RCE family is parameterized by 


• Tuning algorithm for each setting combination with :


• 2. Set & run narrowed search


•  can be unimodal, bimodal, or multimodal


• Construct a space  centered around each peak 


• Then 


• 3. Select 

(α, β) ∈ ℝ+ × ℝ+

r0 = 0.2

accuracy(ΠB)

Π(i)
N πi

ΠN = ⋃
i

Π(i)
N

(k*, c*) = arg max
(k,c)∈ΠN

{accuracy (ℓ+(k, c))}
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Results Summary
Empirical Investigation



Results Summary
Empirical Investigation



Results Summary
Empirical Investigation

Loss CIFAR-10 CIFAR-100

Symmetric CE 43.06 66.32

Asymmetric CE 33.92 64.45

BASELINE:  + 𝒜STD ℓCE



Results Summary
Empirical Investigation

Loss CIFAR-10 CIFAR-100

Symmetric CE 43.06 66.32

Asymmetric CE 33.92 64.45

Loss CIFAR-10 CIFAR-100
α-loss 31.88 57.60

NCE+RCE 32.06 56.82
α-loss 33.16 58.98

NCE+RCE 32.38 58.41

BASELINE:  + 𝒜STD ℓCE

+  ℓα ,  ℓ+

Symmetric

Asymmetric

1

• Both -loss and NCE+RCE significantly 
outperform CE


• -loss is competitive with NCE+RCE

• NCE+RCE shows to be SoTA

α

α 1



Results Summary
Empirical Investigation

Loss CIFAR-10 CIFAR-100

Symmetric CE 43.06 66.32

Asymmetric CE 33.92 64.45

Loss CIFAR-10 CIFAR-100
α-loss 31.88 57.60

NCE+RCE 32.06 56.82
α-loss 33.16 58.98

NCE+RCE 32.38 58.41

Loss CIFAR-10 CIFAR-100

Symmetric CE 16.61 42.92

Asymmetric CE 13.89 41.4

BASELINE:  + 𝒜STD ℓCE

+  ℓα ,  ℓ+

+  𝒜AUGMIX

Symmetric

Asymmetric

2

1

• SoTA data augmentation drastically 
improves performance on corrupted test 
features even when the base loss is not 
robust to label noise

2



Results Summary
Empirical Investigation

Loss CIFAR-10 CIFAR-100

Symmetric CE 43.06 66.32

Asymmetric CE 33.92 64.45

Loss CIFAR-10 CIFAR-100
α-loss 12.80 38.95

NCE+RCE 13.04 40.17
α-loss 13.46 39.30

NCE+RCE 16.27 40.99

Loss CIFAR-10 CIFAR-100
α-loss 31.88 57.60

NCE+RCE 32.06 56.82
α-loss 33.16 58.98

NCE+RCE 32.38 58.41

Loss CIFAR-10 CIFAR-100

Symmetric CE 16.61 42.92

Asymmetric CE 13.89 41.4

BASELINE:  + 𝒜STD ℓCE

+  ℓα ,  ℓ+

+  𝒜AUGMIX

+  𝒜AUGMIX

+  ℓα ,  ℓ+

Symmetric

Asymmetric

Symmetric

Asymmetric

2

1
3

• In our designed task, -loss slightly but 
consistently outperforms NCE+RCE


• This task produces the best overall results 
for our designed setting

α
3
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Estimated Distribution Metrics
Discussion

Classifier (  )̂f, Red panda )(

0.45 Fox 0

0.02 Cow 0

0.23 Red panda 1

0.25 Bear 0

0.05 Dolphin 0

̂P P

𝒴

∈ 𝒟

x
y



Discussion
0.45 Fox 0

0.02 Cow 0

0.23 Red panda 1

0.25 Bear 0

0.05 Dolphin 0

̂P P

𝒴

• Metrics of  important to consider in the context of label 
corruption:


• Estimated probability for the true class


• 


• Smaller values of  should indicate a greater 
likelihood of a label flip 

• “Red panda” is a false-positive class

̂P

1̂x = ̂P( f(x) |x) = 0.23

1̂x

Estimated Distribution Metrics



Discussion
0.45 Fox 0

0.02 Cow 0

0.23 Red panda 1

0.25 Bear 0

0.05 Dolphin 0

̂P P

𝒴

• Metrics of  important to consider in the context of label 
corruption:


• Highest estimated probability of the false classes


•                             .      



• Larger values of  should indicate a greater 
likelihood of a label flip 

• “Fox” is a false-negative class

̂P

0̂x = max{ ̂P(k |x) : f(x) ≠ k ∈ 𝒴}
= 0.45

0̂x

Estimated Distribution Metrics



Discussion

• A classifier  trained on set  with label noise rate  and 
perfectly robust  must contain the following properties:

̂f T r
ℓbase

Estimated Distribution Metrics

Let  denote the set of features in . Then


1.  for % of 


2.  for % of 


3.  for % of 


4.  for % of 

𝒳T T

1̂x ≈ 0 100(r) x ∈ 𝒳T

1̂x ≈ 1 100(1 − r) x ∈ 𝒳T

0̂x ≈ 0 100(1 − r) x ∈ 𝒳T

0̂x ≈ 1 100(r) x ∈ 𝒳T

0 1

r

1 − r

0 1

r

1 − r

 distribution1̂x

 distribution0̂x



Discussion

• The following example* confirms that  is robust to ℓCE r = 0.0

Estimated Distribution Metrics
* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation 



Discussion

• However, this example* illustrates that  is not robust to ℓCE r = 0.3

Estimated Distribution Metrics
* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation 



Discussion

• This example* illustrates that  with  is robust to ℓ+ (k, c) = (2,0.99) r = 0.3

Estimated Distribution Metrics
* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation 



Discussion

• Likewise, this example* illustrates that  with  is robust to ℓα α = 3.5 r = 0.3

Estimated Distribution Metrics
* WRN-40-2, CIFAR-10, Symmetric labeling, Standard augmentation 
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Backpropagation
Discussion

• At the top of the model,  is distributed 

to each node  indicating how  

should change in order to minimize  

• These partial derivatives ultimately 

contribute to the overall gradient  

through the chain rule

∂ℒ
∂ ̂P(ki)

̂P(ki) ̂P(ki)

ℒ

∂ℒ
∂W

ℒ

̂P(k1) ̂P(k2) ̂P(k3) ̂P(kn)

z1 z2 z3 zn

….

….

∂ℒ
∂ ̂P(k1)

∂ℒ
∂ ̂P(k2)

∂ℒ
∂ ̂P(k3)

∂ℒ
∂ ̂P(kn)

∂ ̂P(ki)
∂zj

 ,  (i, j) ∈ [n]2

∂zi

∂W
 ,  i ∈ [n]



Backpropagation
Discussion

• If  were to be a false-positive class 

(false class flipped to a true class), then 

we’d like for  to stay low


• Therefore  should be as high as 

possible

k2

̂P(k2)

∂ℒ
∂ ̂P(k2)

ℒ

̂P(k1) ̂P(k2) ̂P(k3) ̂P(kn)

z1 z2 z3 zn

….

….

∂ℒ
∂ ̂P(k1)

∂ℒ
∂ ̂P(k2)

∂ℒ
∂ ̂P(k3)

∂ℒ
∂ ̂P(kn)

∂ ̂P(ki)
∂zj

 ,  (i, j) ∈ [n]2

∂zi

∂W
 ,  i ∈ [n]



Backpropagation
Discussion

• Suppose  and  . Then


• 


• 


•  for  purposely hinders the growth of  when  is a lesser-

likely event (  ) and therefore more likely to be a false-positive class

(x, y) ∈ 𝒟 ̂f(x) = ̂P

ℓα( ̂P, y; α) =
α

α − 1 (1 − ̂P(y)1− 1
α )

∂ℓa

∂ ̂P(y)
( ̂P, y; α) = − ̂P(y)− 1

α

∂ℓa

∂ ̂P(y)
α > 1 1̂x = ̂P(y) y

1̂x → 0



Backpropagation
Discussion

• Now, if  were to be a false-negative 

class (true class flipped to a false class), 

then we’d like for  to stay high


• Therefore  should be as low as 

possible

k3

̂P(k3)

∂ℒ
∂ ̂P(k3)

ℒ

̂P(k1) ̂P(k2) ̂P(k3) ̂P(kn)

z1 z2 z3 zn

….

….

∂ℒ
∂ ̂P(k1)

∂ℒ
∂ ̂P(k2)

∂ℒ
∂ ̂P(k3)

∂ℒ
∂ ̂P(kn)

∂ ̂P(ki)
∂zj

 ,  (i, j) ∈ [n]2

∂zi

∂W
 ,  i ∈ [n]



Backpropagation
Discussion

• Suppose  ,   , and let  be the most likely false class. Then


•



•  , where  is some constant


• Recall that 

(x, y) ∈ 𝒟 ̂f(x) = ̂P k0 ∈ 𝒴

ℓNCE( ̂P, y) =
log ̂P(y)

∑
k∈𝒴

log ̂P(k)
=

log ̂P(y)
log ̂P(k0) + ∑

k≠k0

log ̂P(k)

ℓRCE( ̂P, y) = A∑
k≠y

̂P(k) = A ⋅ ̂P(k0) + A ∑
k≠y,k0

̂P(k) A ∈ ℝ+

ℓ+( ̂P, y; α, β) = α ⋅ ℓNCE( ̂P, y) + β ⋅ ℓRCE( ̂P, y)



Backpropagation
Discussion

• If we fix  for all  , then  


  


for some constants  ,  

̂P(k) k ≠ k0

ℓ+( ̂P, y; α, β) = α ⋅
log ̂P(y)

log ̂P(k0) + ∑
k≠k0

log ̂P(k)
+ β ⋅ A ⋅ ̂P(k0) + A ∑

k≠y,k0

̂P(k)

=
C1

log ̂P(k0) + C2
+ C3 ⋅ ̂P(k0) + C4

C1, C2 ∈ ℝ− C3, C4 ∈ ℝ+



Backpropagation
Discussion

• Then the partial derivative of  w.r.t.  is  





•   is a decreasing function, which hinders the decay of  when  is a 

more-likely event (  ) and therefore more likely to be a false-negative class

ℓ+
̂P(k0)

∂ℓ+

∂ ̂P(k0)
( ̂P, y; α, β) = −

C1

x (log ̂P(k0) + C2)
2 + C3

∂ℓ+

∂ ̂P(k0)
0̂x = ̂P(k0) k0

0̂x → 1



Backpropagation
Discussion

• To summarize:


1. The -loss family is robust to label corruption because   restrains the 
growth of probabilities for potential false-positive classes


2. The NCE+RCE family is robust to label corruption because  restrains 
the decay of probabilities for potential false-negative classes

α ℓα

ℓ+
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Takeaways

• -loss requires a much-less involved optimal hyperparameter search than that of its SoTA loss 
function family counterpart, NCE+RCE


• When training on corrupted labels, -loss is competitive with NCE+RCE


• When evaluating on corrupted features, data augmentation is essential for optimal performance


• When training on corrupted labels AND evaluating on corrupted features, -loss appears to 
slightly (but consistently) outperform NCE+RCE


• The optimality of  (w.r.t. test performance) does indeed depend on the choice of 

α

α

α

ℓbase 𝒜



Agenda
• Brief introduction


• Background


• Image classification


• Robust loss functions


• Data augmentation


• Empirical investigation


• Motivation


• Setting (control & variable)

• Hyperparameter tuning


• Results summary


• Discussion


• Estimated distribution metrics


• Backpropagation


• Takeaways


• Next step


• Q&A



Next Step

• Give more consideration into why -loss 
appears to consistently outperform NCE+RCE 
in our designed setting


• Potential explanation:


• Although both families succeed at learning 
the clean train set, NCE+RCE slightly 
overfits on the clean-augmented hybrid 
distribution while -loss generalizes to the 
overall distribution

α

α

Clean set (train + test)

Corrupted set
Augmented set

NCE+RCE -lossα



Agenda
• Brief introduction


• Background


• Image classification


• Robust loss functions


• Data augmentation


• Empirical investigation


• Motivation


• Setting (control & variable)

• Hyperparameter tuning


• Results summary


• Discussion


• Estimated distribution metrics


• Backpropagation


• Takeaways


• Next step


• Q&A



Q&A



The End

Thanks for viewing!


