
Building a Fact-Checked Classifier with Naive Bayes… and More!

Kyle Otstot - Social Media Mining

1. Abstract

In this report, I first define the task assigned to me, then outline my approach
to solve the task. More specifically, I was tasked with the implementation of a
classification algorithm that is expected to learn on a feature-sparse, class-
imbalanced training set. In later sections, I describe the data-preprocessing,
algorithm structure, and experimental protocol of my solution, and end with an
evaluation of several notable shortcomings.

2. Introduction

For this project, I was given the task of developing a machine learning (ML)
algorithm that classifies the conclusions of fact-checking articles (paired with
other data, such as the topic, source, etc.) as one of the following labels: FALSE
(0), MISLEADING (1), TRUE (2), UNPROVEN (3). I was provided with a train set
of ~6,000 examples and an unlabeled test set of ~700 examples. My objective
was to train a model on the train set and predict the labels of the examples in
the test set, which would be evaluated for accuracy on Kaggle. The two major
obstacles in the task were (1) the heavy imbalance of labeling (mostly 0’s), and
(2) the need for feature engineering, as very little information was provided in
the datasets. In summary, I decided to extract more features by requesting the
HTML pages of each article in the dataset, and develop an algorithm that would
primarily learn on these new features. My journey to an effective ML solution
has been documented in the following sections.

3. Related Works

In this section, I list and provide an overview of two works related to the task of
text classification. Although I did not go these specific routes, I found them to
be good resources in general.



Text Classification Using Naive Bayes: Theory & A Working Example [1]. This
resource provides a step-by-step implementation of Naive Bayes in the setting
of text classification, using the Sci-Kit Learn library in Python. Naive Bayes did
not work the best in the context of my task, but it still serves as an effective
solution to the general problem of text classification.

TF IDF | TFIDF Python Example [2]. This resource provides a step-by-step
implementation of TF-IDF (term frequency - inverse document frequency) in
the setting of text classification, also using Sci-Kit Learn. I decided to not use
TF-IDF but it pairs well with Naive Bayes to form an effective
text-classification solution.

4. Model Description

In this section, I highlight each aspect of my solution and provide brief
justification for implementation choices.

https://fullfact.org/health/800-killed-misinformation/ → fullfact.org (4.1)

Websites in the Dataset. Websites were extracted from the URLs in order to
group similar articles (4.1). The model was constructed under the assumption
that the fact-checked articles coming from the same website have similar
underlying HTML structures. As a result, a narrowed focus on articles from the
same website may reveal patterns in the HTML that the model can learn. Each
dataset is composed of a manageable number of websites with very significant
overlap (shown by 4.2). This allows the model to learn website patterns in the
train set and apply this knowledge to websites in the test set .
Website Data Collection. Data-preprocessing includes the HTML request for each
article in the train/test sets. Then I use the BeautifulSoup Python Library [3] to
parse each HTML file for the following attributes:

● Class names (class). These help identify certain blocks of HTML for
styling/scripting/etc. It is possible that same-labeled, same-website
articles have more class names in common.



● Image source links (src). These are the URLs that contain images
referenced by the article. It is possible that same-labeled, same-website
articles include the same images (i.e. an image that says ‘False’).

● Image alternate text (alt). These are descriptions of images in the article.
If articles have similar images, it is
possible that the alt text is the same.

● URL links (href). These are clickable
links to other websites/articles. It is
possible that same-labeled,
same-website articles share the same
links.

● Text within tags (text). These include
entire blocks of text within HTML tags
as single tokens. Same-labeled articles
of the same website may contain similar
phrases that define its label.

● Website article content (content). These attempt to reflect the actual text
content of the articles. After parsing, the data includes a list of
uni-grams, a list of bi-grams, and a list of tri-grams. The idea is that
N-grams (when N > 1) [4] do a better job at preserving meaning since the
ordering of words can be very important and must be taken into account.

Text Classification Models. The outcome of the data-preprocessing step includes
a “bag” of words (tokens) for each attribute in the previous section. For
instance, one article’s HTML file will be parsed into a bag of class names, bag of
image source links, bag of alt text, and so on. Then all the bags of the same
attribute (across all articles on the website) + the label data will be passed to the
text classification model for training. I use the following two models:

● “Switches”. This original model ranks the attribute tokens based on its
likelihood to be present in one label and absent in all the other labels. The
model attempts to find tokens that best act as “switches” (that is, its
presence/absence solely dictates the label of the article). This was created
from the observation that many websites have specific keywords (classes,
links, text, etc.) that define the labeling, and nothing else matters. Details
on the implementation can be found in the source code.



● Variant of Naive Bayes. This model is loosely inspired by Naive Bayes [1]
in the sense that it attempts to estimate a posterior distribution (label
likelihood conditioned on a bag of tokens). However, it also takes into
account the tokens that are not present in the article, since in this
context, absent tokens can be just as telling as present tokens.

An example of a switch (model 1) classification on two different attributes is
provided in the table below.

src text

Website

“Switches”
Results

FALSE:

'https://www.newtral.es//wp-co
ntent/uploads/2020/07/fake.svg
?x97913%1'
0.99999999998

'https://www.newtral.es//wp-co
ntent/uploads/2020/07/fake.svg
?x97913%2'
0.99999999998

MISLEADING:

'https://www.newtral.es//wp-co
ntent/uploads/2020/07/fact-che
ck-engañoso.svg?x97913%2'
0.99999999998

'https://www.newtral.es//wp-co
ntent/uploads/2020/07/fact-che
ck-engañoso.svg?x97913%1'
0.99999999998

FALSE:

'False#span%1'
0.99999999998

'COVID-19Pandemic\xa0#a%1'
0.47999999999279996

MISLEADING:

'Misleading#span%1'
0.99999999998

'This#a%1'
0.599999999988



ML Pipeline Overview. Here I provide a visualization of the ML pipeline applied
to the task at hand, from website grouping to data preprocessing to optimal
attribute+model search. First, the articles are grouped by website and a website
is then sampled. Then the group of articles belonging to the sampled website
are split into train and test sets. Attribute data is then extracted from each
article, and one model (at a time) trains on the data for one attribute (at a time)
from the articles in the train set, and is evaluated by the articles in the test set.
Each attribute+model combination is tested, and the combination with the best
evaluation accuracy is used to predict the labels for the unlabeled articles (from
the real test set) for that website.

5. Experiment

In this section, I document the experimental procedure and results. The
procedure follows the ML pipeline described above and can be broken into the
following four steps:

Train-Test Split. Each website begins with a list of articles and a corresponding
list of labels. The goal is to split up the articles into two mutually-exclusive



groups- the train set and test set- where (1) the train set contains N% of the
articles and the test set contains (100 - N)% of the articles; (2) the label
distribution in the train set are consistent with that in the test set, and both are
approximately equal to the overall label distribution. For this experiment, I
used N = 70 because having a sufficient amount of test data is very important in
considering the optimal attribute+model combination.

Model Training. Each attribute-model combination trains on data from articles
in the train set. If the switch model is used, the train step passes a
label,token->score dictionary to the evaluation step; if the Bayesian-like model
is used, the train step passes a label-token posterior distribution to the
evaluation step.

Model Evaluation. This step receives (1) data structures (depending on the
model) from the training step, and (2) a test set of articles. The data for each
test article is used with the data structures to make label predictions, which are
then evaluated against the true labels provided in the test set. Each
attribute-model combination is given an accuracy score, and the best
combination is selected for each website. The table below shows the optimal
accuracy scores (compared to the baseline of guessing all 0’s) for the five most
frequent websites.

Website Baseline Optimal Method

factcheck.afp.com 0.7333 0.7556 3-gram, Bayes

politifact.com 0.6316 0.6316 Baseline

maldita.es 1.0000 1.0000 Baseline

newtral.es 0.8571 1.0000 1-gram, Switch

cekfakta.tempo.co 0.9091 0.9091 Baseline

factuel.afp.com 0.8479 0.8696 3-gram, Bayes

boomlive.in 0.9333 1.0000 3-gram, Switch



Prediction & Kaggle Contest Results. After determining the most accurate
methods for each website, the unlabeled articles in the real test dataset are
classified using these optimal methods. One important observation is that for
the majority of the websites, the baseline method of guessing 0 is the most
accurate method; this means that for many websites, there is no underlying
structure in the HTML that determines the label of each article. Rather, in many
cases, the label is determined by the meaning of the content, which cannot be
easily represented by a bag of tokens. Nevertheless, this learning algorithm
performed better than merely guessing 0s; I ran the algorithm three times
(with different random seeds) and obtained the following results from Kaggle:

Trial #1 Trial #2 Trial #3 Baseline

Mean F1
Score

0.51594 0.51730 0.50768 0.52137

The best result, though submitted after the deadline, would have ranked 3rd on
the leaderboard. This really underscores how difficult it is to make predictions
on a heavily imbalanced dataset.

6. Future Works

In this section, I discuss ideas that can be further addressed in future works.
The following three topics are noteworthy shortcomings to my solution and
could be studied further in order to potentially improve it.

Generalizing to unforeseen websites. This algorithm takes advantage of the
overlap in websites between the train and test sets. However, if the test set
primarily consists of articles from unforeseen websites, this algorithm would be



rendered useless. Therefore, a more effective algorithm for this task would have
the ability to classify articles independent of its website.

Accounting for limitations of N-grams. Although N-grams were introduced to
preserve meaning (at least to some extent) in the article content itself, for most
websites this approach failed to find patterns that could predict the labeling
more accurately than the baseline method. Extracting meaning from a body of
text is a notable issue in the field of Natural Language Processing.

Limiting the variability across random seeds. I found that the three trials had
(pretty significantly) different results for the optimal methods. More data may
resolve this shortcoming, but in the future, it would be beneficial to robustify
the two text classification models under varied train-test splits.

7. References

[1]
https://towardsdatascience.com/text-classification-using-naive-bayes-theor
y-a-working-example-2ef4b7eb7d5a

[2]
https://towardsdatascience.com/natural-language-processing-feature-engine
ering-using-tf-idf-e8b9d00e7e76

[3]
https://beautiful-soup-4.readthedocs.io/en/latest/

[4]
https://towardsdatascience.com/understanding-word-n-grams-and-n-gram
-probability-in-natural-language-processing-9d9eef0fa058


