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Problem Definition

e Recommender systems have proven to be a successful method of reducing information
overload in light of the increasing volume of online information.

e In recent years, research on recommender systems and information retrieval has
shown that deep learning has a wide-ranging impact. However, they still have issues
when working with extremely sparse data or other problems like cold start.

e The purpose of this review paper is to provide a comprehensive and systematic
analysis of current research on recommender systems based on deep learning.

e We will provide a detailed taxonomy along with summaries for state-of-the-art
algorithms.

e \We also plan to provide a perspective on the future trends and research challenges of
deep learning in recommender systems.
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Movie rating histograms
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1. 1M:

e 1 million rankings, in the range of 0.5 to 5.0, over ~4000 movies.

e Ratings from ~6040 users.

e Contains user information: Gender::Age::Occupation::Zip-code

2. 20M:

20 million rankings, in the range of 0.5 to 5.0, over 62,000 movies.
Ratings from 138493 users.

Movies are associated with genres and user-generated tags.

A common benchmark for testing a wide variety of different movie
recommendation algorithms.



System Architecture & Evaluations

The implemented models in the scope of this project can also be classified based upon the
dataset used for training and inference. We will be conducting the comparative analysis of the
evaluations results based on this classification.

e Dataset: Movielens 20M - Use only the rating information
o Deep Variational Autoencoder with Shallow Parallel Path for Top-N Recommendation

(VASP)

e Dataset: MovieLens 1M - Rating information and user auxiliary information
o MelLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation
o Inductive Matrix Completion Using Graph Autoencoder
o MultiNominal Restricted Boltzman Machine
o Bootstrapping User and ltem Representations for One-Class Collaborative Filtering
(BUIR)
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Self-Supervised Learning: “Bootstrapping User and Item Representations for One-Class

Collaborative Filtering (BUIR)”
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Semi-supervised Learning: “MeLU: Meta-Learned User Preference Estimator for Gold-Start

Recommendation”
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Unsupervised Learning: MultiNomial Restricted Boltzmann Machine

e (Generative neural network

e Attempt to learn the distribution of tastes (latent
factors) and use this approximated distribution to

generative new rankings.

e Make guesses about the distribution and try to

approximate it.

@)

Gibbs Sampling to sample from the
distribution and calculate forward and
backward gradients

Minimize Free Energy in the system.
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Comparative Study - Performance
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Comparative Study - Resources
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Bonus Section

Task: “Ranking expert users and top movies by genre”

How to quantify user expertise?

Mean absolute rating error
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Mean absolute rating error

Solution: project the 2D metric space onto vector that best preserves variance (PCA)

and establishes natural ranking system
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Project Plan: Tasks, Deadlines, Division of Work

# Task Description Task Owner Deadline Status

1 [Background Study & Literature Survey Everyone 25-Oct Completed
2 |Project Proposal Everyone 12-Oct Completed
3 |Brainstorm the taxonomy for the survey Everyone 25-Oct Completed
4 |Understanding of the selected SOTA for Supervised Learning Chinmay Bhale 25-Oct Completed
5 |Implement the selected SOTA for Supervised Learning Chinmay Bhale 15-Nov Completed
6 |Understanding of the selected SOTA for Supervised Learning Kritshekhar Jha 25-Oct Completed
7 |Implement the selected SOTA for Supervised Learning Kritshekhar Jha 15-Nov Completed
8 |Understanding of the selected SOTA for Self Supervised Learning Paras Sheth 25-Oct Completed
9 |Implement the selected SOTA for Self Supervised Learning Paras Sheth 15-Nov Completed
10 |Understanding of the selected SOTA for Semi Supervised Learning Tharindu Kumarage 25-Oct Completed
11 [Implement the selected SOTA for Semi Supervised Learning Tharindu Kumarage 15-Nov Completed
12 |Understanding of the selected SOTA for Unsupervised Learning Truxten Cook 25-Oct Completed
13 |Implement the selected SOTA for Unsupervised Learning Truxten Cook 15-Nov Completed
14 |Understanding of the selected SOTA for Unsupervised Learning Kyle Otsot 25-Oct Completed
15 [Implement the selected SOTA for Unsupervised Learning Kyle Otsot 15-Nov Completed
16 |Comparative analysis & discussion Everyone 20-Nov Completed
17 |Project Presentation Everyone 14-Nov Completed
18 |[Group Demo Everyone 30-Nov Completed
19 |Final Report Everyone 2-Dec Completed
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Problem D ition

Recommender systems have proven to be a successful method of reducing information overload in light of the
increasing volume of online information.

In recent years, research on recommender systems and information retrieval has shown that deep learning has a
wide-ranging impact. However, they still have issues when working with extremely sparse data or other problems
like cold start

The purpose of this review paper is to provide a comprehensive and systematic analysis of current research
projects on recommender systems based on deep learning

We will provide a detailed taxonomy along with summaries for state-of-the-art algorithms.

We also plan to provide a perspective on the future trends and research challenges of deep learning in
recommender systems
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