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Abstract—Recommender systems have proven to be a
successful method of reducing information overload in light
of the increasing volume of online information. In recent
years, research on recommender systems and information
retrieval has shown that deep learning has a wide-ranging
impact. However, they still have issues when working with
extremely sparse data or other problems like cold start. The
field of deep learning in recommender systems is currently
flourishing. The purpose of this review paper is to provide a
comprehensive and systematic analysis of current research
projects on recommender systems based on deep learning.
We also provide a detailed taxonomy along with summaries
for state-of-the-art algorithms providing a perspective on
the future trends and research challenges of deep learning
recommender systems.

Index Terms—Recommender systems, Deep Learning
models, survey

I. INTRODUCTION

The rapid expansion of information has greatly im-
pacted how individuals make decisions. Consequently,
recommender systems [1] have drawn researchers’ in-
terest as a practical solution to the problem of “in-
formation overload.” Recommender systems have been
extensively employed in various domains and problem
statements, including big data analysis [2], and medicine
prescription [3]. Interest in this field is still high due
to the rising need for real-world applications that can
offer individualized recommendations and manage in-
formation overload. Addressing these issues, numerous
cutting-edge strategies have been proposed, including
content-based collaborative filtering [4], clustering-based
filtering, merging item- and user-based similarity [5],
and so on. To forecast a user’s rating on an item,
collaborative filtering (CF) takes into account the ratings
of related users or things. On the other hand, information
retrieval and information filtering are the foundations of
content-based filtering– an algorithm that compares the
information in the product with the user profile, using
both the profile and product as its sources of data [4]. The
current state-of-the-art (SoTA) recommender systems are
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very successful and yield high performance; however,
these systems still suffer from critical issues.

Deep recommendation algorithms have a natural ap-
petite for data; however, a considerable amount of train-
ing data is required to benefit from the deep architecture.
Data acquisition in recommender systems is expensive
since tailored recommendations rely on user-generated
data, yet most people often can only consume a small
fraction of innumerable items [6]. As a result, deep
recommendation models are unable to perform to their
full potential due to the data sparsity problem [?]. Self-
supervised learning’s (SSL) main goal is to extract useful
and transferable knowledge from large amounts of unla-
beled data via well-designed pretext tasks (also known
as self-supervised tasks), where the supervision signals
are generated semi-automatically. Early versions of self-
supervised recommendation (SSR) might be linked to
unsupervised techniques such as autoencoder-based rec-
ommendation models [7], [8], which rely on various
corrupted data to rebuild the initial data to prevent
overfitting. Another common issue, known as the cold
start problem, refers to providing recommendations for
users and items with no historical interaction records [9].

When it comes to implicit data collection, recom-
mender procedure entails automatically determining the
degree of things or products by recording, evaluating,
and processing data gleaned from users’ application-
related actions. For instance, implicit feedback of user
information is utilized in movies to track user behavior.
As it does not require explicit (clear) ratings to re-
ceive recommendations, using this kind (implicit) when
looking for material on the web improves the user
experience.[10] Contrarily, explicit feedback is a method
that enables a consumer to clearly convey their demand
for a product. Users generally give these items points
by scanning them, such as a 5-star (or occasionally
10-star) rating system, a yes/no question, or perhaps
likes/dislikes, which are popular in social networks, to
express their interest in a product. Typically, recom-
mender systems gather user preferences using a few
of the rating systems. As a result, it could be argued
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that this type of feedback (explicit feedback) depends
primarily on how users react to an item after rating it.

As an accurate predictor of offline evaluation, proper
recommender system evaluation is an issue that is be-
coming more and more crucial [11]. The recsys group
changed to using Top-N techniques for offline evaluation
because using root mean squared error on top of a
projected rating matrix can be quite deceptive. [12]. For
each user in the Top-N recommendation scenario, the
system recommends the N most pertinent items. The
is frequently the case in domains like media, news, or
e-commerce. For example, collaborative filtering with
matrix factorization has been suggested as one method
for solving this task. Sparse data encoders have recently
received a lot of attention and have produced cutting
edge outcomes in this research problem. Models such
as denoising autoencoders, variational autoencoders [13]
[14], and a shallow autoencoder called the EASE [15],
which, despite being a straightforward linear model,
is producing results that are competitive and under-
standable while addressing the main issue with sparse
autoencoders: overfitting towards identity.

A. Problem Statement

Movie recommendation is a vast field of importance
with a long history of different proposed solutions. In
this paper, we aim to provide an overview of the the
current work on movie recommendation by evaluating
models across the major common paradigms: supervised
learning, self-supervised learning, semi-weak supervised
learning, and unsupervised learning. This survey intends
to provide readers interested in systems with a general
framework for selecting deep neural networks to handle
specific recommendation tasks. The three main contri-
butions of this survey are as follows: (1) we conduct
an extensive review of recommendation models based
on deep learning techniques and propose a classification
scheme to position and organize the current work; (2) we
provide an overview and summary for SoTA methodolo-
gies; and (3) we discuss the challenges and open issues,
as well as identify new trends and future directions in
this research field.

II. RELATED WORKS

In this section, we outline the standard and SoTA
methods and algorithms used for the task of content
recommendation. Figure 1 provides a detailed view
of the recommender system taxonomy focused on the
model-based recommender systems.
Content-Based: this method first builds a profile of the
user’s preferences based on the movies they have already
seen, and for the movies they have not yet seen, it gen-
erates the top K movie recommendations. To represent
the movie characteristics and user profiles in vector form,

techniques like vector space models (VSM) [16], term-
frequency inverse-document-frequency (TF-IDF) models
[4], and latent semantic index (LSI) [17] are used. The
content-based filtering technique can be broken down
into the following steps: product representation, profile
learning, and recommendation generation.
Collaborative Filtering (CF): these systems gather user
feedback in the form of ratings for items in a specific
domain, allowing them to recommend subsequent items
based on trends in rating behavior across users. That is,
CF-based recommender systems will suggest items to a
user based on the preferences of other users. On the
one hand, memory-based systems continuously derive
their recommendations from incoming user data; as the
number of user ratings accumulates over time, so does
the system’s accuracy. On the other hand, model-based
techniques can forecast future user behavior by learning
a model from current user behavior [18].
Hybrid: hybrid recommendation systems are combina-
tions of content-based and CF-based methods. In general,
the combination of two approaches into a single model
[19] provides a thorough assessment of recommender
systems. There are seven primary ways for creating a
hybrid model, as listed by Isinkaye et al. [20]: weighted,
switching, mixed, feature combination, feature augmen-
tation, cascade and meta-level. Focusing on model-based
recommender system, we can further classify these based
upon their learning paradigm, which is discussed below.

A. Supervised Learning

A graph neural network (GNN) is applied to the
complete network in Graph Autoencoder (GAE) [21],
which is the foundation of most GNN-based matrix
completion techniques, to learn a representation for each
node. To forecast potential ratings, the representations
of the user and item nodes are combined. A multi-graph
CNN model, for instance, is suggested by Monti et al.
[22] to extract user and item latent information from their
nearest neighbor networks. AutoRec [23] a collaborative
filtering autoencoder-based model with explicit ratings
that surpasses all available baseline algorithms. Follow-
ing the development of variational autoencoders (VAE),
Liang et al. [14] introduced the collaborative filtering
model MultVAE employing multinomial log-likelihood
as data distribution. In place of deep architectures, H.
Steck presented EASE [15], an embarrassingly shallow
autoencoder with no hidden layers outperforming SOTA
models. Many straightforward, shallow and intricate
deep learning architectures has been put forth during the
development of the recommender system.

B. Self-Supervised Learning

The early prototypes of self-supervised recommenda-
tion (SSR) can be traced back to unsupervised methods



Fig. 1: Taxonomy of Recommender Systems

like autoencoder-based recommendation models which
rely on different corrupted data to reconstruct the orig-
inal input to avoid overfitting. Following that, SSR
emerged as network embedding-based recommendation
models [24], [25], in which random-walk proximity is
used as self-supervision signals to capture similarities
between users and items. During the same time period,
some generative adversarial networks (GANs)-based rec-
ommendation models [26], [27] that augment user-
item interactions can be viewed as another embodiment
of SSR. The recommendation community then began
to embrace SSL, and subsequent research [28], [29]
focused on pre-training recommendation models with
Cloze-like tasks on sequential data. For a more detailed
analysis users can refer to [30]

C. Semi/Weak Supervised Learning

The primary motivation for incorporating semi-
supervision in recommender systems was to address
two known issues in supervised-learning techniques; (1)
the data sparsity problem and (2) the cold-start prob-
lem– completely labeled data is unavailable for newly
joining users [31]. Under the paradigm of SSML, we
see that few-shot learning and meta-learning have been
heavily utilized in recommender system applications
such as movie recommendation [32]. Many previous
works involving meta-learning in recommender systems
tackle the cold start problem [33], [34]. Vartak et al.
[33] present a meta-learning strategy to address item
cold-start when new items arrive continuously. In other
recommender system work, Bharadhwaj [34], and Lee et
al. [35] use the model agnostic meta-learning framework
to consider each user in the system as a task; the author

then attempts to optimize each task’s weights in a few
gradient steps.

D. Unsupervised Learning

Unsupervised learning has a long history in for the
Movie Recommendation task. These methods include
things like K-Means Clustering and Principal Compo-
nent Analysis, which both attempt to cluster similiar
movies together to provide recommendations. Other
types of unsupervised techniques that have been more
model based have prominence in recent years such as
AutoEncoders [36] and Generative Adversarial Networks
(GANS). These models have benefited from the large
amount of data that has become available for the movie
recommendation task.

III. SYSTEM ARCHITECTURE & ALGORITHMS

We tested several different models based on the cat-
egories above. Below we outline the architectures and
the algorithms of each model we tested, along with their
visualizations. We also talk about some of the salient
features of each model and how they stand out and
differentiate themselves from others.

A. Supervised Learning

For the learning paradigm supervised learning, we
choose the following two architectures;
(1) Deep Variational Autoencoder with Shallow Par-
allel Path for Top-N Recommendation (VASP):

The goal of this paper is to develop an recommender
system model that is as elegant and understandable as
EASE while utilizing the potential of deep autoencoders
to describe intricate nonlinear patterns in the data with
most obvious hurdle of overfitting to identify. In order



to accomplish this Dropout in the input layer has histor-
ically been used to combat overfitting towards identity
[13], [14], [37] though this strategy, however, falls short
in terms of effectiveness and does not allow for the use
of extremely deep architectures. The major highlights
from this paper are as follows

Fig. 2: Architecture of VASP

• The usage of focal loss for training autoencoders for
TopN recommendation. Focal Loss (FL) is used for
recommendation systems. The imbalance between
the background class and other classes is addressed
by this unique solution for object detection’s un-
balanced classes. This indicates that examples in
the training set that are challenging to classify
suffer greater losses. This is an excellent example
of how collaborative filtering works in situations
when certain items are more popular than others.
Since there are fewer interactions with specialized
products, recommending them is more challenging.
The recommender algorithm is forced to concen-
trate more on niche and cold start products due to
these items’ higher loss rates.

• A simple yet effective data augmentation technique
to prevent Top-N recommending autoencoders from
overfitting towards identity. Preventing overfitting
towards learning the identity function between the
input and output layer of the autoencoder is another
crucial concept when training an autoencoder on
sparse data [38].

• A joint-learning technique based on the Hadamard
product for training different combinations of vari-
ous models. Proposed VASP architecture uses com-
bination of two models, NEASE and FLVAE en-
sembled by element-wise multiplication.

(2) Inductive Matrix Completion Using Graph Au-
toencoder: This model[39] uses a Graph Autoencoder
(GAE) to learn both user and item specific representa-
tions for personalized recommendations and local graph
patterns for inductive matrix completions. The paper

claims that the model is more efficient at learning local
graph patterns in GAE and has good scalability with
superior expressiveness compared to other GNN-based
matrix completion methods. The model aims to make
propose the following improvements:

Fig. 3: Architecture of IMC-GAE

• The paper wants to better understand local graph
patterns and to that end does quantitative analysis
on 5 datasets. The observations from this analysis
motivated the creation of the architecture for this
model.

• The paper designs an identital feature and a role
aware feature for the model to learn expressive
graph patterns.

• The paper designs a layer-wise node dropout
schema that drops more nodes in the higher lev-
els. This makes link representation in the model
contain more node information in a 1-hop local
graph around the target link. This makes the model
learn local graph patterns related to the target link,
forwarding the capability of inductive learning.

B. Self-Supervised Learning

For the learning paradigm self-supervised learning, we
choose the following architecture:

Bootstrapping User and Item Representations for
One-Class Collaborative Filtering (BUIR): The goal
of this paper is to improve the One Class Collabora-
tive Filtering (OCCF) which aims to identify the user-
item pairs that are positively-related but have not been
interacted yet, where only a small portion of positive
user-item interactions (e.g., users’ implicit feedback) are
observed. The authors propose a novel framework called
BUIR for which no negative sampling is necessary.
BUIR uses two separate encoder networks that learn
from one another to avoid a collapsed solution and make
the representations of positively-related users and items
similar to one another. Additionally, BUIR effectively
resolves the OCCF data sparsity problem by adding
stochastic data to the encoder inputs. Every time it
encodes, BUIR randomly creates the augmented views
of each successful interaction based on the user and
item’s neighborhood information. This self-supervision



(a) BUIR’s framework

(b) BUIR’s Data Augmentation

Fig. 4: The overall architecture of BUIR

then further trains the model. The architecture can be
seen in Figure. 4. BUIR works as follows:

• BUIR use a network that is similar to a student-
teacher in which only the student’s output u (and v)
is optimized to forecast the target v (and u) supplied
by the teacher. In particular, BUIR bootstraps the
representations of people and things directly by
using two different encoder networks, referred to
as the target encoder and the online encoder. The
item (and user) vectors produced by the target
encoder are more similar to those of the online
encoder thanks to optimization. Simultaneously, the
target encoder is updated using a momentum-based
moving average to gradually approach the online
encoder, encouraging the use of improved represen-
tations as the target for the online encoder. Thus,
the positive correlation between u and v can be
captured by the online encoder.

• To deal with the data-sparsity problem, BUIR em-
ploys a stochastic data augmentation technique. It
exploits augmented views of an input interaction,
which are generated based on the neighborhood
information of each user and item (i.e., the set of
the items interacted with a user, and the users in-
teracted with an item). The stochastic augmentation
is applied to positive user-item pairs when they are
passed to the encoder, so as to produce the different
views of the pairs. In the end, BUIR is allowed to
learn various views of each positive user-item pair.

C. Semi/Weak Supervised Learning

For the learning paradigm semi-supervised learning,
we choose the following architecture:

Meta-Learned User Preference Estimator for Cold-
Start Recommendation (MeLU)

This study [35] suggests a recommender system that
can predict user preferences based on just a few items.
They mainly try to address the drawback of insufficient
evidence candidate generation for the cold-start setting.
It consists of a user preference estimator that utilizes
model agnostic meta-learning theory to quickly adopt a
new task with a few examples. Here the task is equivalent
to estimating the item preference of a given user.

Architectures-wise MeLU consists of an ordinary neu-
ral matrix factorization machine. However, it’s process
differs from an ordinary neural matrix factorization due
to the following two key components. 1) MeLU incorpo-
rates supplementary information about the user (gender,
age, ...) and item (title, genres, ... ) while learning the
user/item embeddings and, 2) It implements the MAML
theory by dividing the training into two-levels (learning-
to-learn concept); namely local update and global update.
For these two updates, they split a given user’s consumed
items into two sets: support and query. This training
framework is as seen in figure 5.

Fig. 5: Architecture of MeLU

D. Unsupervised Learning

For our Unsupervised Learning model, we choose
to use a multinomial Restricted Boltzmann Machine
[40]. A Restricted Boltzmann Machine is a type of a
generative stochastic two layer neural network. They
work by attempting to learn the probability distribution
that the given dataset was sampled from. Once this
probability distribution has been approximated, it can
be sampled from to generative new rankings for movies
that did not appear in the input dataset. The first layer,
the visible layer, corresponds to visible features in the
dataset. The second layer, the hidden layer, attempts to
model the latent variables that affect the underlying prob-
ability distribution. Each hidden node in the Restricted
Boltzmann Machine is connected to every input node.
There are no connections between nodes in a layer in



a Restricted Boltzmann machine. We can consider this
model as using a collaborative filtering based approach,
as user data and movie data are used simultaneously to
create the estimated probability distribution.

In general, Restricted Boltzmann Machines tend to
perform well when the the conditions that the inference
data were collected are similar to the conditions that
the training data were collected with. This is because
the Restricted Boltzmann Machine tries to learn the
underlying probability distribution that the training data
was sampled from, so if conditions change that affect the
actual probability distribution that the real data emerges
from, than the results of the Restricted Boltzmann Ma-
chine may degrade. An advantage of this model for
movie recommendation is that the simplicity of the
network allows for very fast training and inference.

IV. DATASETS

Description: For this project, we will primarily work
with one of the prominent movie recommendation
benchmark datasets: the MovieLens dataset [41]. This
dataset was extracted from the movie recommenda-
tion service MovieLens, containing the rating values
for different movies and free-text labeling activities.
The MovieLens dataset has different versions that offer
additional data based on the use case. We primarily
use MovieLens 1M and MovieLens 20M versions in
our work. Table I summarizes the statistics of the two
versions we used.

Version Users Movies Ratings (range)
1M 6040 4000 1M (0.5 -5)
20M 138493 62000 20M (0.5 -5)

TABLE I: Dataset Description

Preproessing: The MovieLens dataset was preprocessed
according to the different requirements of the above-
mentioned selected SOTA methods. In particular, some
arcitectures work with explicit ratings while others work
with implicit ratings. One notable example was the train-
ing of the VASP model; the dataset was preprocessed in
accordance with [14]. The data was changed to implicit
interactions by taking into account legitimate interactions
only rating of four or higher as this dataset contains
explicit ratings. Moreover, for the MeLU approach, we
had to separately create warm (users/items with enough
interactions more than 5) and cold states (users/items
with less than 5 interactions) training data files. However,
to make a fair comparative study, we hold out an eval-
uation set and share it across all the model evaluations.

V. EVALUATIONS

A. Evaluation Metrics

To determine the caliber of the approaches, method-
ologies, and algorithms for predictions and recommen-
dations in recommender systems’ research, assessment
metrics and quality measurements are needed. Evalu-
ation frameworks and metrics make it easier to com-
pare several approaches to the same issue and choose
from a variety of fruitful lines of inquiry that provide
superior outcomes. The following are the most popular
quality metrics: (1) Prediction assessments, (2) recom-
mendations evaluations as sets, and (3) recommendations
evaluations as ranked lists.

For the purpose of our survey, we utilize Mean-
Absolute Error (MAE), and Root-Mean Sqaured Error
(RMSE) for prediction assessments, Recall for rec-
ommendations evaluations as sets, and Hit-Ratio and
Normalized Discounted Cumulative Gain (NDCG) for
recommendation evaluations as ranked lists.

1) Prediction Assessment: The calculation of some
of the most used prediction error metrics, among which
the Mean Absolute Error (MAE) and its related metrics
Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE) stand out, is typically used to assess the
accuracy of the findings of a recommender system. These
metrics are formulated as,

MAE =
1

|U |
∑
u∈|U |

(
1

|I|
∑
i∈|I|

|pu,i − ru,i| (1)

RMSE =
1

|U |
∑
u∈|U |

√√√√ 1

|I|
∑
i∈|I|

(pu,i − ru,i)2 (2)

where |U | represents the number of users, |I| represents
the number of items, pu,i represents the predicted rating
for user u and item i, and ru,i represents the true rating
for user u and item i.

2) Recommendation Evaluations as Sets: Users’ trust
in a particular recommender system is not directly corre-
lated with the collection of possible forecasts’ accuracy.
When a user accepts a smaller selection of recommen-
dations provided by the RS, the user gains confidence in
the recommender system. In this part, we establish the
Recall recommendation quality metric, which measures
the proportion of recommended items that are relevant
relative to the total number of relevant items.

R =
1

|U |
∑
u∈|U |

#(i ∈ Zu)

#(i ∈ Zu) + #(i ∈ Zc
u)

(3)

where Zu represents the set of items recommended to
user u by the system, θ represents the relevance rating
threshold and ru,i represents the rating for item i given
by user u. In the equation 3, the following condition



Learning
Paradigm Algorithm RMSE MAE NDCG@10 HR@10

Supervised
Learning IMC-GAE 0.83 0.74 0.78 0.69

Semi-Supervised
Learning MeLU 0.85 0.77 0.84 -

Self-Supervised
Learning BUIR - - 0.11 0.25

Unsupervised
Learning

Multinomial
Restricted
Boltzmann
Machine

0.83 0.54 0.69 -

TABLE II: Results obtained across different metrics for different models for the MovieLens-1M dataset.

Learning
Paradigm Algorithm NDCG@100 Recall@20 Recall@50

Supervised
Learning VASP 0.444 0.411 0.548

TABLE III: Results obtained across different metrics for VASP for the MovieLens-20M dataset.

should holds: ru,i ≥ θ. Zc
u represents the set of items

the user interacted with but were not present in the
recommendation set.

3) Recommendation Evaluations as Ranked Lists:
Users give the first recommendations on the list more
weight when there are a large number of recommended
things. Compared to the last item on the list, the errors
made in these items are more serious. The ranking
metrics take into account this circumstance. Among the
ranking measures most often used are Hit-Ratio@K and
NDCG@K. Hit-Ratio@K refers to the proportion of
users for which the model is able to correctly include
the items user has interacted with in the list of top-K
recommended items:

HR =
|UK

hit |
|Uall|

, (4)

where
∣∣UK

hit

∣∣ is the number of users for which the
recommender systems was able to include the items user
has interacted with in the top-K recommended items list
and |Uall | denotes the total number of users in the test
dataset. For user-item interactions, gain for an item refers
to the relevance score. To take order of the ranking
into account, Discounted Cumulative Gain (DCG) is
formulated as DCGi

K =
∑K

r=1
2yu,r−1

log2(1+r) , where yu,r
refers to the ground truth rating for user u and rth ranked
item. The normalized discounted gain (nDCG) is

nDCGK =
1

|U |
∑
u∈U

DCGu
K

IDCGu
K

, (5)

where |U | refer to the total number of users in the test
set and IDCGu

K refers to the best value of DCGu
K .

B. Results and Findings

We ran the different learning paradigm based models
and obtained the results as shown in the Table. II for

MovieLens-1M Dataset, and Table. III for MovieLens-
20M Dataset. We made the following observations re-
garding the different models:

• Both the Supervised Learning and Unsupervised
Learning models tend to have lower prediction er-
ror when compared to the Semi-Supervised Learn-
ing models. The Self-Supervised Learning model,
BUIR were not evaluated for error rates as they
deal with implicit feedback.

• The Semi-Supervised Learning model MeLU, per-
forms best in terms of the ranking metrics, as
it utilizes auxiliary information about the users
such as the user demographics. In terms of the
ranking performance, supervised learning models
outperform the unsupervised models.

• Explicit Feedback based models tend to have better
performance for the MovieLens-1M dataset when
compared to the implicit feedback model, BUIR.

• Models such as MeLU that leverage additional cues
such as user demographics to better understand
the user preferences, lead to better ranking perfor-
mance, indicating that capturing user preferences is
crucial in recommender systems.

VI. VISUALIZATION

In this section we describe the visualization results
from the various model architectures.

A. Supervised Learning

(1) Deep Variational Autoencoder with Shallow Par-
allel Path for Top-N Recommendation (VASP):

The Figure: 6 shows the trend of the training and
the validation loss over 40 epochs. The decrease in the
training loss is expected but we also see the validation
loss increasing which means the model is loosing its
capability to generalize on unseen data.



Fig. 6: Training and Validation loss per Epoch

Fig. 7: Metric evaluation results per Epoch

We expect that if the model is able to generalize well
the loss is decreasing and the accuracy is increasing
but this is an ideal scenario. When we implement and
reproduce the results from the VASP model we see in
the Figure: 7 the coverage metric results after epoch 8
plateaus out and do not change significantly over further
epochs. At this point the model start over fitting on the
training data and causing the validation loss to increase
as seen in the Figure: 6. We argue increasing loss and
stable accuracy could also be caused by good prediction
classified as a little worse. This is the point where the
model start to overfit and both validation loss increases
and stability in the accuracy happens simultaneously.
This is when the network starts to learn the patterns
only relevant to the training dataset and therefore lack
in generalization. For the final evaluation we do 5-fold
validation on the user’s interaction history. It is more
objective measure than only hide sampled 20% of the
user’s interactions randomly.5-fold mean NCDG@100:
0.444, Recall@20: 0.411 and Recall@50: 0.548

(2) Inductive Matrix Completion Using Graph Au-
toencoder:

Below 8 is the train and validation loss as the training
progresses. The model trained for a total of 1578 epochs.
There are no signs of over or underfitting of the model.

Fig. 8: Training and Validation loss per Epoch

B. Self-Supervised Learning

Fig. 9: Metric evaluation results per Epoch

Since BUIR is designed for implicit feedback, we
aimed to evaluate its ranking performance over differ-
ent values of K. The resulting figure can be seen in
Figure. 11. For the ranking metrics’ as K increases
the Hit-Ratio and NDCG values should also increase.
This happens because the larger the K is more likely
the model is able to find a hit for the items in the
relevant items set. We observe this happening as seen
in the figure. As the number of K increases both the
NDCG@K and HR@K increase. Finally, the increment
is significant as the HR@5 starts at 0.14 and HR@100 is
close to 0.30. Similarly, NDCG@5 increases from 0.29
to NDCG@100 0.37. The increment in NDCG is not as
huge as HR because along with the presence of the item
in the relavant list, NDCG also checks if the order of
the item is preserved or not between the relevant item
set and the recommended item set.

C. Semi/Weak Supervised Learning

As mentioned in the architecture section, MeLU is
specially catered to solve the cold start problem while



making recommendations. Therefore, the authors define
the following four states of recommendations to investi-
gate this claim.
R1- Recommendation of existing items for existing users
R2- Recommendation of existing items for new users
R3- Recommendation of new items for existing users
R4- Recommendation of new items for new users

Here R2 represents the user cold start while R3 repre-
sents the item cold-start. And R4 is the most severe cold
start case where we have both user and item cold starts.
The following Figure 10 shows the rating prediction and
ranking task performances of MeLU under each of these
four states.

Fig. 10: Metric evaluation results per Epoch

We can observe that even though MeLU’s rating
prediction performance decreases (MAE) when the cold-
start occurs, it still performs well in item ranking task
(NDCG), i.e., user preference estimation. In a real-world
recommender system, what is most important in the cold-
start state is to have a good evidence candidate generator.
Thus, from this visualization, we can see that MeLU is
a worthy candidate model.

D. Unsupervised Learning

Fig. 11: RMSE over training epochs for the Mulitinom-
inal Restricted Boltzmann Machine

Over the course of training the Restricted Boltzmann
Machine, we find that the RMSE steadily decreases,
plateuing around epoch 100. Going beyond epoch 100

for training did not significtly decrease the loss and de-
creases our other metrics, such as MAE and NDCG@10,
so training was stopped at 100 epochs.

VII. BONUS: MOVIE & USER RANKINGS

For the supplementary portion of our project, we
were tasked with the proposal of a method that ranks
top movies and expert users by genre. In doing so,
we identified the characteristics of a “top movie” or
“expert user”, quantified them using standard metrics,
and developed a strategy for synthesizing metric pairs
into one representative measure; then a natural ordering
emerges, which leads us to rankings of movies and users.

First, we brainstormed qualities of movies and users
that would deem them popular and knowledgeable, re-
spectively. For movies, a top-ranked one should not
only achieve a high average rating but also receive
a respectable amount of reviews; a steady balance
between the two objectives would ensure that high-
rated, hardly-watched movies and low-rated, commonly-
watched movies would not outrank movies that are rated
both highly and frequently. Similarly, we would expect
an expert user to not only give ratings that are consistent
with public opinion, but also rate a sufficiently large
amount of movies; this way, we know the user has good
judgment and possesses enough domain knowledge to
give confident claims. Therefore, we decided to consider
two metrics for each ranking; the movie ranking will
consider the number of reviews and average rating for
each movie, and the user ranking will consider the
number of reviews and average rating error for each
user. The last metric is computed as follows:

Error(u) =
1

|u-Ratings|
∑

m,r∈u-Ratings

|r − AvgRating(m)|

where u-Ratings is the set of movie (m) ratings (r)
done by user u. Clearly, this creates a 2D attribute
distribution for each of the rankings; however, in order to
establish an ordering, we must project the 2D data onto
1D space. Dimensionality reduction techniques have
received interest in many domains, but for our purposes,
we consider Principal Component Analysis (PCA)– a
method that aims to find a projection onto 1D space that
maximizes the variance between the data points. This
characteristic of PCA is particularly desirable in our ap-
plication because a larger spread of data ensures greater
ranking robustness to slight distributional changes (e.g.,
an incoming batch of new ratings). Specifically, Figures
12 and 13 showcase the results of PCA performed on
the metric pairs described for each of the two rankings,
filtered by the comedy genre; the projections are illus-
trated for a select group of ranks (e.g., 1st, 2nd, 5th, 10th,
20th), which gives better insight into how the algorithm
balances the two metrics.



Fig. 12: Top movies ranked by PCA

Fig. 13: Expert users ranked by PCA

Although the preliminary application of PCA gives
intriguing results, one cannot help but question if a line
is the best 1D space to project the data onto; after all,
data for both cases appear to follow the direction of a
curve rather than a line. As a result, we also consider
the implementation of PCA on a transformed space, one
that converts the values in each dimension to percentiles
of their respective distributions; this way, the 2D is
uncluttered and unbiased, encouraging a line to be a
more appealing candidate for projection. After careful
transformation of the axes (see notebook.ipynb
in the bonus_section directory of the repository),
we perform PCA in the percentile space to find the
line of best fit, then transform everything back to the
original space. In Figures 14 and 15, we see that the
principal component is now a curve instead of a line, and
appears to be much more representative of the data. For
comparison, in the repository notebook we listed the top
10 movies determined by both types of PCA implemen-
tations, and the results do differ in some of the positions.
Specifically, the latter implementation places more of an
emphasis on average rating when the movies possess a
sufficiently-high number of reviews. Overall, the second
attempt qualitatively appears to identify a better set of
comedy movies, but both results are generally consistent
with public opinion.

Fig. 14: Top movies ranked by PCA in percentile space

Fig. 15: Expert users ranked by PCA in percentile space

VIII. CONCLUSION

Recommending pertinent content to users, RSs have
been utilized to address the issues associated with infor-
mation overload. To obtain high-quality RSs, numerous
developments and breakthroughs have been made in
this area. The key tasks of deep learning-based recom-
mender systems are organizing the enormous amounts
of heterogeneous data from several sources, creating
better user models based on user requirements and
preferences, and enhancing performance. In comparison
to traditional recommender systems, deep learning-based
recommender systems can model the sequence patterns
of user behavior, more accurately reflect the user’s vari-
ous preferences, and increase recommendation accuracy
by using deep learning techniques to automatically learn
the latent features of user and item by integrating various
types of multi-source heterogeneous data. This study
focuses on the most prevalent challenges and issues,
including cold start issues, sparsity issues, scalability
issues, and evaluation issues, as well as the most current
attempts to address them.
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