## Towards Addressing GAN Training Instabilities: Dual-Objective GANs with Tunable Parameters

Kyle Otstot

Arizona State University

June 9, 2023

Graduate Supervisory Committee: Lalitha Sankar, Chair Oliver Kosut Giulia Pedrielli

- GAN Overview & Common Failures
- **2** Formulating the  $(\alpha_D, \alpha_G)$ -GAN
- Summary of Results

#### 1. GAN Overview & Common Failures

#### Generative Adversarial Networks (GANs)



• Adversarial min-max game between  $G_{ heta}$  and  $D_{\omega}$ 

 $\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \sup_{\boldsymbol{\omega} \in \boldsymbol{\Omega}} V(\boldsymbol{\theta}, \boldsymbol{\omega})$ 

• Goodfellow et al. (2014) introduced (now called) the vanilla GAN

 $V_{\mathsf{VG}}(\theta,\omega) = \mathbb{E}_{X \sim P_r}[\log D_{\omega}(X)] + \mathbb{E}_{Z \sim P_Z}[\log (1 - D_{\omega}(G_{\theta}(Z)))]$ 

 $D_{\omega}(x)$  is the probability that x is real,  $x \in \mathcal{X}$ 

 $V_{\mathsf{VG}}(\theta, \omega) = \mathbb{E}_{X \sim P_r}[\log D_{\omega}(X)] + \mathbb{E}_{Z \sim P_Z}[\log (1 - D_{\omega}(G_{\theta}(Z)))]$ 

• Assuming sufficiently large  $\Omega$  and fixed  $G_{\theta}$ , the discriminator  $D_{\omega^*}$  optimizing the sup of  $V_{\text{VG}}$  is given by

$$D_{\omega^*}(x) = \frac{p_r(x)}{p_r(x) + p_{G_{\theta}}(x)}$$

• Assuming sufficiently large  $\Theta$  and optimal  $D_{\omega^*}$ , the generator optimizing the inf of  $V_{VG}$  minimizes the **Jensen-Shannon Divergence** between  $p_r$  and  $p_{G_{\theta}}$ 

• 
$$p_r = p_{G_{\theta}}$$
 when  $\forall_x D_{\omega}(x) = \frac{1}{2}$  and  $D_{JS}(p_r || p_{G_{\theta}}) = 0$ 

- Although an elegant formulation, the vanilla GAN faces several challenges that threaten its training stability
  - Exploding & vanishing gradients
  - Ø Mode collapse
  - Model oscillation
- We illustrate these challenges with toy examples

• Cluster of generated data approaches real mode



• Discriminator updates to estimate  $p_r(x)/(p_r(x) + p_{G_{\theta}}(x))$ 



• Rightmost generated samples receive steep gradients which heavily influence the next generator update



• Generated data overshoots mode toward the  $D_{\omega^*}(x) \approx 1$  region



• Discriminator updates with very confident predictions



• Generated samples receive flat gradients, thus freezing  $G_{ heta}$ 



## Non-Saturating Vanilla GAN

 To address exploding & vanishing gradients, Goodfellow *et al.* (2014) proposed the *non-saturating vanilla GAN*<sup>1</sup>

$$\sup_{\omega \in \Omega} V_{\mathsf{VG}}(\theta, \omega), \qquad \inf_{\theta \in \Theta} V_{\mathsf{VG}}^{\mathsf{NS}}(\theta, \omega) \coloneqq \mathbb{E}_{X \sim P_{G_{\theta}}} \left[ \log D_{\omega}(X) \right]$$



<sup>1</sup>First dual-objective GAN

## Mode Collapse

• Generated data fits onto real mode



## Mode Collapse

• Discriminator output is flat in dense  $p_{G_{\theta}}$  region



## Mode Collapse

• Generator receives near-zero gradients from flat non-saturating (or saturating) loss, thus appearing to "collapse" on the real mode



• Most generated data approach real mode, while some remain far away



• Discriminator confidently classifies "outlier" generated mode, gives cautious predictions for remaining data



• Outlier data receive very steep gradients while local data receive relatively flat gradients



• Generator prioritizes correcting the outlier data at the expense of preserving the proximity of the local data



• Discriminator updates with confident predictions



• Generated samples receive steep gradients, which may lead to oscillations around the real mode



## 2. Formulating the $(\alpha_D, \alpha_G)$ -GAN

#### CPE Loss Function Perspective of GANs

Kurri et al. (2021) shows that V(θ,ω) can be expressed with a class probability estimation (CPE) loss l

$$V(\theta,\omega) = \mathbb{E}_{X \sim P_r} \left[ -\ell(1, D_{\omega}(X)) \right] + \mathbb{E}_{X \sim P_{G_a}} \left[ -\ell(0, D_{\omega}(X)) \right]$$

- $\ell(y, \hat{y})$  any CPE loss -  $\hat{y} \in [0, 1]$  is a soft prediction of  $y \in \{0, 1\}$
- **Example:**  $\alpha$ -GAN [Kurri *et al.* (2021)] uses the CPE loss function  $\alpha$ -loss,  $\alpha \in (0, 1) \cup (1, \infty]$  [Sypherd *et al.* (2019)]:

$$\ell_{\alpha}(y,\hat{y}) = \frac{\alpha}{\alpha-1} \left(1-y\hat{y}^{\frac{\alpha-1}{\alpha}} - (1-y)(1-\hat{y})^{\frac{\alpha-1}{\alpha}}\right)$$

# $(\alpha_D, \alpha_G)$ -GAN: A Generalization of $\alpha$ -GAN

•  $\alpha$ -GAN uses value function  $V_{lpha}$ 

$$V_{\alpha}(\theta,\omega) = \mathbb{E}_{X \sim P_r} \left[ -\ell_{\alpha}(1, D_{\omega}(X)) \right] + \mathbb{E}_{X \sim P_{G_{\theta}}} \left[ -\ell_{\alpha}(0, D_{\omega}(X)) \right]$$

in the min-max game

$$\inf_{\theta \in \Theta} \sup_{\omega \in \Omega} V_{\alpha}(\theta, \omega)$$

- This formulation recovers a class of *f*-GANs that minimize the Arimoto *f*-divergence <sup>2</sup>
- Fails to address GAN challenges due to overly-convex generator loss with  $\alpha < 1$ , or overconfident discriminator with  $\alpha > 1$

<sup>2</sup>Hellinger GAN ( $\alpha = 1/2$ ), Vanilla GAN ( $\alpha = 1$ ), Total Variation GAN ( $\alpha = \infty$ )

## $(\alpha_D, \alpha_G)$ -GAN: A Generalization of $\alpha$ -GAN

$$V_{\alpha}(\theta,\omega) = \mathbb{E}_{X \sim P_r} \left[ -\ell_{\alpha}(1, D_{\omega}(X)) \right] + \mathbb{E}_{X \sim P_{G_{\theta}}} \left[ -\ell_{\alpha}(0, D_{\omega}(X)) \right]$$

• To address the GAN challenges, we introduce  $(\alpha_D, \alpha_G)$ -GAN

$$\sup_{\omega \in \Omega} V_{\alpha_D}(\theta, \omega), \qquad \qquad \inf_{\theta \in \Theta} V_{\alpha_G}(\theta, \omega)$$

- Recovers  $\alpha$ -GAN ( $\alpha_D = \alpha_G$ ) and vanilla GAN ( $\alpha_D, \alpha_G = 1$ )
- Motivated by Goodfellow *et al.* (2014), we also introduce the non-saturating (α<sub>D</sub>, α<sub>G</sub>)-GAN

$$\sup_{\omega \in \Omega} V_{\alpha_D}(\theta, \omega), \qquad \inf_{\theta \in \Theta} V_{\alpha_G}^{\mathsf{NS}}(\theta, \omega) \coloneqq \mathbb{E}_{X \sim \mathcal{P}_{\mathcal{G}_{\theta}}}[\ell_{\alpha_G}(1, D_{\omega}(X))]$$

• Assuming a sufficiently large  $\Omega$  and fixed  $G_{\theta}$ , the discriminator  $D_{\omega^*}$  optimizing the sup of  $V_{\alpha_D}$  is given by

$$D_{\omega^*}(x) = \frac{p_r(x)^{\alpha_D}}{p_r(x)^{\alpha_D} + p_{G_{\theta}}(x)^{\alpha_D}}$$

• Same optimal  $D_{\omega}$  for both saturating and non-saturating cases

## [Result 1] Discriminator Learns $\alpha_D$ -Tilted Posterior

#### Theorem 1

The optimal  $(\alpha_D, \alpha_G)$ -GAN discriminator  $D_{\omega^*}$  is equivalent to the  $\alpha_D$ -tilted version of the true posterior P(Y = 1|X), namely  $P_{\alpha_D}(Y = 1|X)$ .

#### Theorem 1

The optimal  $(\alpha_D, \alpha_G)$ -GAN discriminator  $D_{\omega^*}$  is equivalent to the  $\alpha_D$ -tilted version of the true posterior P(Y = 1|X), namely  $P_{\alpha_D}(Y = 1|X)$ .

Proof sketch:

- The vanilla (1,1)-GAN discriminator learns P(Y = 1|X), the probability that sample  $X \sim \frac{1}{2}P_r + \frac{1}{2}P_{G_{\theta}}$  is real (Y = 1) or generated (Y = 0), which is equivalent to  $P_r(X)/(P_r(X) + P_{G_{\theta}}(X))$
- Using this equality, we can show that

$$\begin{split} P_{\alpha_D}(Y=1|X) &= \frac{P(Y=1|X)^{\alpha_D}}{P(Y=1|X)^{\alpha_D} + P(Y=0|X)^{\alpha_D}} \\ &= \frac{P_r(X)^{\alpha_D}}{P_r(X)^{\alpha_D} + P_{G_\theta}(X)^{\alpha_D}} = D_{\omega^*}(x) \end{split}$$

#### [Result 1] Discriminator Learns $\alpha_D$ -Tilted Posterior



## Generator Optimization of $(\alpha_D, \alpha_G)$ -GAN

- During backpropagation, the gradient vector ∂ℓ/∂x is computed for each generated sample x in the batch
  - **Interpretation:** which direction and magnitude should x move in order to reduce the generator loss?



## Generator Optimization of $(\alpha_D, \alpha_G)$ -GAN

Our question: how would tuning (α<sub>D</sub>, α<sub>G</sub>) ∈ [0,∞)<sup>2</sup> influence this gradient vector?



# Generator Optimization of $(\alpha_D, \alpha_G)$ -GAN

Our question: how would tuning (α<sub>D</sub>, α<sub>G</sub>) ∈ [0,∞)<sup>2</sup> influence this gradient vector?



Our claim: Tuning α<sub>D</sub> and α<sub>G</sub> only affects the magnitude, not direction, for *both* saturating/non-saturating (α<sub>D</sub>, α<sub>G</sub>)-GANs

# [Result 2] Impact of $(\alpha_D, \alpha_G)$ on Saturating Loss

#### Theorem 2

Let x be a sample generated by  $G_{\theta}$  and  $D_{\omega^*}$  be optimal with respect to  $V_{\alpha_D}$ . Then the direction of the **saturating** gradient  $-\partial \ell_{\alpha_G}(0, D_{\omega^*}(x)) / \partial x$  is independent of  $\alpha_D$  and  $\alpha_G$ .

# [Result 2] Impact of $(\alpha_D, \alpha_G)$ on Saturating Loss

#### Theorem 2

Let x be a sample generated by  $G_{\theta}$  and  $D_{\omega^*}$  be optimal with respect to  $V_{\alpha_D}$ . Then the direction of the **saturating** gradient  $-\partial \ell_{\alpha_G}(0, D_{\omega^*}(x)) / \partial x$  is independent of  $\alpha_D$  and  $\alpha_G$ .

#### Proof sketch:

• The saturating gradient can be simplified to

$$-\frac{\partial \ell_{\alpha_{G}}\left(0, D_{\omega^{*}}(x)\right)}{\partial x} = C_{\alpha_{D}, \alpha_{G}}\left(\frac{1}{p_{G_{\theta}}(x)}\frac{\partial p_{G_{\theta}}}{\partial x} - \frac{1}{p_{r}(x)}\frac{\partial p_{r}}{\partial x}\right)$$

where  $C_{\alpha_D,\alpha_G}$  is a scalar defined as

$$C_{\alpha_D,\alpha_G} = \alpha_D P_{\alpha_D} \left( Y = 1 | X = x \right) \left( 1 - P_{\alpha_D} \left( Y = 1 | X = x \right) \right)^{1 - 1/\alpha_G}$$
• Tuning  $\alpha_D < 1$  increases gradient for samples far from real data • Tuning  $\alpha_G > 1$  decreases gradient for samples close to real data



- Tuning  $\alpha_D < 1$  helps combat vanishing gradients
- Tuning  $\alpha_G > 1$  helps combat exploding gradients



#### Theorem 3

Let x be a sample generated by  $G_{\theta}$  and  $D_{\omega^*}$  be optimal with respect to  $V_{\alpha_D}$ . Then the direction of the **non-saturating** gradient  $\partial \ell_{\alpha_G} (1, D_{\omega^*}(x)) / \partial x$  is independent of  $\alpha_D$  and  $\alpha_G$ .

#### Theorem 3

Let x be a sample generated by  $G_{\theta}$  and  $D_{\omega^*}$  be fixed and optimal with respect to  $V_{\alpha_D}$ . Then the direction of the **non-saturating** gradient  $\partial \ell_{\alpha_G}(1, D_{\omega^*}(x)) / \partial x$  is independent of  $\alpha_D$  and  $\alpha_G$ .

Proof sketch:

• The non-saturating gradient can be simplified to

$$\frac{\partial \ell_{\alpha_G} \left( 1, D_{\omega^*}(x) \right)}{\partial x} = C_{\alpha_D, \alpha_G}^{\mathsf{NS}} \left( \frac{1}{p_{\mathcal{G}_{\theta}}(x)} \frac{\partial p_{\mathcal{G}_{\theta}}}{\partial x} - \frac{1}{p_r(x)} \frac{\partial p_r}{\partial x} \right)$$

where  $C_{\alpha_D,\alpha_G}^{NS}$  is a scalar defined as

$$C_{\alpha_D,\alpha_G}^{\mathsf{NS}} = \alpha_D \left(1 - P_{\alpha_D} \left(Y = 1 | X = x\right)\right) P_{\alpha_D} \left(Y = 1 | X = x\right)^{1 - 1/\alpha_G}$$





• Can't we just decrease the learning rate for smaller gradients?

 $\bullet\,$  Generator weight update with learning rate  $\eta$ 

$$\begin{split} \theta^{(i+1)} &\coloneqq \theta^{(i)} - \eta \frac{\partial \ell}{\partial \theta^{(i)}} \\ &\coloneqq \theta^{(i)} - \eta \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \frac{\partial \ell}{\partial x} \frac{\partial x}{\partial \theta^{(i)}} \\ &\coloneqq \theta^{(i)} - \eta \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \left[ C_{\alpha_D, \alpha_G}^{\mathsf{NS}}(\cdots) \right] \frac{\partial x}{\partial \theta^{(i)}} \\ &\coloneqq \theta^{(i)} - \left( \eta C_{\alpha_D, \alpha_G}^{\mathsf{NS}} \right) \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} (\cdots) \frac{\partial x}{\partial \theta^{(i)}} \end{split}$$

• More accurately,  $\eta C_{\alpha_D,\alpha_G}^{NS}$  can be considered the gradient scalar

 Tuning α<sub>D</sub> < 1 decreases (increases) gradients received by samples far from (close to) real data: helps combat model oscillation



#### • Tuning $\alpha_{G} > 1$ may immobilize samples very far from real data



- Saturating  $(\alpha_D, \alpha_G)$ -GAN
  - Tuning  $\alpha_D < 1$  helps combat vanishing gradients
  - Tuning  $\alpha_{G} > 1$  helps combat exploding gradients
- Non-saturating  $(\alpha_D, \alpha_G)$ -GAN
  - Tuning  $\alpha_D < 1$  helps combat model oscillation
  - Tuning  $\alpha_G > 1$  reduces the gradients received by outlier samples even more, but may cause generator to ignore outliers

## 3. Experiments & Summary of Results

#### • GANs

- Vanilla GAN (+ non-saturating)
- $(\alpha_D, \alpha_G)$ -GAN (+ non-saturating)
- Least Squares GAN (LSGAN) [Mao et al. (2017)]

#### GANs

- Vanilla GAN (+ non-saturating)
- $(\alpha_D, \alpha_G)$ -GAN (+ non-saturating)
- Least Squares GAN (LSGAN) [Mao et al. (2017)]
- Datasets
  - 2D Gaussian Mixture Ring [Srivastava et al. (2017)]
  - Celeb-A Image Dataset [Liu et al. (2015)]
  - LSUN Classroom Image Dataset [Yu et al. (2015)]

### GANs

- Vanilla GAN (+ non-saturating)
- $(\alpha_D, \alpha_G)$ -GAN (+ non-saturating)
- Least Squares GAN (LSGAN) [Mao et al. (2017)]
- Datasets
  - 2D Gaussian Mixture Ring [Srivastava et al. (2017)]
  - Celeb-A Image Dataset [Liu et al. (2015)]
  - LSUN Classroom Image Dataset [Yu et al. (2015)]
- Hypothesis
  - Tuning  $\alpha_D < 1$  and  $\alpha_G > 1$  improves the training stability of  $(\alpha_D, \alpha_G)$ -GAN
  - In particular, it robustifies the GAN training to random model weight initializations

- We draw samples from 8 equal-prior Gaussian distributions
- Each mode  $i \in \{1, 2, \dots, 8\}$  has mean  $(\cos(2\pi i/8), \sin(2\pi/8))$  and variance  $10^{-4}$
- We generate 50k training samples and 25k testing samples
- We also generate the same amount of 2D Gaussian noise vectors for training/testing



## [2D-Ring] Model Architecture

• Both  $D_{\omega}$  and  $G_{\theta}$  networks have 4 fully-connected layers with 200 and 400 units, respectively



## [2D-Ring] GANs & Hyperparameters

#### • GANs

- Vanilla GAN (+ non-saturating)
- $(\alpha_D, \alpha_G)$ -GAN (+ non-saturating)

• 
$$(\alpha_D, \alpha_G) \in [0.5, 1] \times [0.9, 1.2]$$

• LSGAN with 0-1 binary coding scheme

$$\inf_{\omega \in \Omega} \mathbb{E}_{X \sim P_r} \left[ \frac{1}{2} \left( D_{\omega}(x) - 1 \right)^2 \right] + \mathbb{E}_{X \sim P_{G_{\theta}}} \left[ \frac{1}{2} \left( D_{\omega}(x) \right)^2 \right]$$
$$\inf_{\theta \in \Theta} \mathbb{E}_{X \sim P_{G_{\theta}}} \left[ \frac{1}{2} \left( D_{\omega}(x) - 1 \right)^2 \right]$$

- Hyperparameters
  - Adam optimization with learning rate  $10^{-4}$
  - 400 training epochs

### Mode coverage

- Number of modes that contain a sample within three standard deviations of its mean
- e High-quality samples
  - Percentage of samples that are within three standard deviations of any modes' mean
- 6 KL Divergence
  - Assign each real and generated sample to its closest mode
  - Creates two distributions (real/generated) across the 8 modes
  - We find that **mode coverage reported over 200 seeds** is the best indicator of GAN training stability

• Table of saturating  $(\alpha_D, \alpha_G)$ -GAN success rates

| % of success |     | α <sub>D</sub> |     |     |     |     |     |  |
|--------------|-----|----------------|-----|-----|-----|-----|-----|--|
| (8/8 modes)  |     | 0.5            | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |  |
| $\alpha_{G}$ | 0.9 | 73             | 79  | 69  | 60  | 46  | 34  |  |
|              | 1.0 | 80             | 79  | 74  | 68  | 54  | 47  |  |
|              | 1.1 | 79             | 77  | 68  | 70  | 59  | 47  |  |
|              | 1.2 | 75             | 74  | 71  | 65  | 57  | 46  |  |

- Top 4 results emboldened, vanilla GAN
- $\alpha_D < 1$  has more impact than  $\alpha_G > 1$

• Table of saturating  $(\alpha_D, \alpha_G = 1)$ -GAN failure rates

| % of failure |     | α <sub>D</sub> |     |     |     |     |     |  |
|--------------|-----|----------------|-----|-----|-----|-----|-----|--|
| (0/8 modes)  |     | 0.5            | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |  |
| ας           | 0.9 | 11             | 10  | 12  | 13  | 29  | 49  |  |
|              | 1.0 | 5              | 5   | 7   | 8   | 16  | 30  |  |
|              | 1.1 | 7              | 9   | 13  | 12  | 13  | 26  |  |
|              | 1.2 | 9              | 5   | 9   | 12  | 17  | 31  |  |

- Top 3 results emboldened, vanilla GAN
- $\alpha_D < 1$  has more impact than  $\alpha_G > 1$

• Plot of saturating  $(\alpha_D, 1)$ -GAN results



• Saturating: Vanilla (1,1)-GAN vs. (0.2,1)-GAN



• Table of **non-saturating**  $(\alpha_D, \alpha_G)$ -GAN success rates

| % of success |     | α <sub>D</sub> |     |     |     |     |     |     |     |
|--------------|-----|----------------|-----|-----|-----|-----|-----|-----|-----|
| (8/8 modes)  |     | 0.5            | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 |
| $\alpha_{G}$ | 0.8 | 35             | 24  | 19  | 19  | 14  | 16  | 18  | 10  |
|              | 0.9 | 39             | 37  | 19  | 22  | 16  | 20  | 19  | 21  |
|              | 1.0 | 34             | 35  | 29  | 28  | 26  | 22  | 20  | 32  |
|              | 1.1 | 40             | 36  | 31  | 22  | 24  | 15  | 23  | 25  |
|              | 1.2 | 45             | 38  | 34  | 25  | 26  | 28  | 20  | 22  |
|              | 1.3 | 44             | 39  | 26  | 28  | 28  | 25  | 31  | 29  |

- Top 5 results emboldened, vanilla GAN
- LSGAN success rate: 33%
- $\alpha_D < 1$  and  $\alpha_G > 1$  both improve performance

• Non-Saturating: Vanilla (1,1)-GAN vs. (0.5,1.2)-GAN vs. LSGAN



### • Celeb-A Dataset: collection of $\approx$ 200k celebrity headshots



- Resize & center crop all images to size 64 × 64
- Generate  $\approx$  200k Gaussian noise vectors of size 100
- 80%-20% train-validation split for both images & noise vectors

## [Celeb-A] Model Architecture

• Deep Convolutional GAN (DCGAN) [Radford et al. (2015)]



Discriminator

### GANs

- Non-saturating vanilla GAN
- Non-Saturating  $(\alpha_D, \alpha_G)$ -GAN
  - $(\alpha_D, \alpha_G) \in [0.5, 1] \times \{1\}$
- LSGAN with 0-1 binary coding scheme
- Hyperparameters
  - Adam optimization with learning rates  $\in \left[10^{-4}, 10^{-3}\right]$
  - Number of train epochs  $\in \{10, 20, \cdots, 100\}$

## [Celeb-A] Evaluation Metrics

• Fréchet Inception Distance (FID) [Heusel *et al.* (2017)] averaged over 50 seeds



• FID = 
$$\|\mu_r - \mu_g\|^2$$
 + Tr $\left(\Sigma_r + \Sigma_g - 2\left(\Sigma_r \Sigma_g\right)^{1/2}\right)$ 

## [Celeb-A] Quantitative Results

- Plot of mean FID over learning rate for 6  $(\alpha_D, 1)$ -GANs and LSGAN
- $\alpha_D$  = 0.6 appears to be most robust to learning rate



## [Celeb-A] Quantitative Results

• Log-scale plot of mean FID over epoch for three GANs and two learning rates:  $\alpha_D = 0.6$  appears to converge over time



## [Celeb-A] Qualitative Results

- Generated samples across 8 seeds for three GANs trained with  $5\times 10^{-4}$  learning rate for 100 epochs
- (0.6, 1)-GAN and LSGAN appear to be most stable & highest quality



## [LSUN Classroom] Data Preparation

### • LSUN Classroom Dataset: collection of $\approx$ 170k classroom images



- Resize & center crop all images to size  $112 \times 112$
- Generate  $\approx$  170k Gaussian noise vectors of size 100
- 80%-20% train-validation split for both images & noise vectors

## [LSUN Classroom] Model Architecture

• Deep Convolutional GAN (DCGAN)



### GANs

- Non-saturating vanilla GAN
- Non-Saturating  $(\alpha_D, \alpha_G)$ -GAN
  - $(\alpha_D, \alpha_G) \in [0.5, 1] \times \{1\}$
- LSGAN with 0-1 binary coding scheme
- Hyperparameters
  - Adam optimization with learning rates  $\in \left[10^{-4}, 10^{-3}\right]$
  - Number of train epochs  $\in \{10, 20, \cdots, 100\}$

### [LSUN Classroom] Evaluation Metrics

#### • Fréchet Inception Distance (FID) averaged over 50 seeds



• FID = 
$$\|\mu_r - \mu_g\|^2$$
 + Tr $\left(\sum_r + \sum_g - 2(\sum_r \sum_g)^{1/2}\right)$ 

## [LSUN Classroom] Quantitative Results

- Plot of mean FID over learning rate for 6  $(\alpha_D, 1)$ -GANs and LSGAN
- Tuning α<sub>D</sub> < 1 is more robust to learning rate, but LSGAN greatly outperforms all tested (α<sub>D</sub>, α<sub>G</sub>)-GANs


# [LSUN Classroom] Quantitative Results

• Log-scale plot of mean FID over epoch for three GANs and two learning rates: vanilla GAN extremely sensitive to learning rate



#### [LSUN Classroom] Qualitative Results

- Generated samples across 8 seeds for three GANs trained with  $2\times 10^{-4}$  learning rate for 100 epochs
- (0.6,1)-GAN and LSGAN are much more stable than vanilla GAN



- 2D-ring (saturating)
  - Vanilla GAN showed instability due to exploding & vanishing gradients
  - Tuning  $\alpha_D$  down to 0.3 decreased failure rate 30%  $\rightarrow$  2%
  - Tuning  $\alpha_{\rm G}$  had no significant impact on stability

- 2D-ring (saturating)
  - Vanilla GAN showed instability due to exploding & vanishing gradients
  - Tuning  $\alpha_D$  down to 0.3 decreased failure rate 30%  $\rightarrow$  2%
  - Tuning  $\alpha_{G}$  had no significant impact on stability
- 2D-ring (non-saturating)
  - Tuning  $\alpha_D$  down to 0.5 and  $\alpha_G$  up to 1.2 *doubled* success rate compared to vanilla GAN (22%  $\rightarrow$  45%)
  - (0.5, 1.2)-GAN performed more stable than LSGAN (45% vs. 33%)

- 2D-ring (saturating)
  - Vanilla GAN showed instability due to exploding & vanishing gradients
  - Tuning  $\alpha_D$  down to 0.3 decreased failure rate 30%  $\rightarrow$  2%
  - Tuning  $\alpha_{G}$  had no significant impact on stability
- 2D-ring (non-saturating)
  - Tuning  $\alpha_D$  down to 0.5 and  $\alpha_G$  up to 1.2 *doubled* success rate compared to vanilla GAN (22%  $\rightarrow$  45%)
  - (0.5, 1.2)-GAN performed more stable than LSGAN (45% vs. 33%)
- Celeb-A
  - Fixing  $\alpha_{G} = 1$  gave the best performance
  - $\bullet\,$  Tuning  $\alpha_{D}$  down to 0.6 gave the most robust GAN to learning rate

- 2D-ring (saturating)
  - Vanilla GAN showed instability due to exploding & vanishing gradients
  - Tuning  $\alpha_D$  down to 0.3 decreased failure rate 30%  $\rightarrow$  2%
  - Tuning  $\alpha_{G}$  had no significant impact on stability
- 2D-ring (non-saturating)
  - Tuning  $\alpha_D$  down to 0.5 and  $\alpha_G$  up to 1.2 *doubled* success rate compared to vanilla GAN (22%  $\rightarrow$  45%)
  - (0.5, 1.2)-GAN performed more stable than LSGAN (45% vs. 33%)
- Celeb-A
  - Fixing  $\alpha_{G} = 1$  gave the best performance
  - $\bullet\,$  Tuning  $\alpha_{D}$  down to 0.6 gave the most robust GAN to learning rate
- LSUN Classroom
  - Fixing  $\alpha_{G}$  = 1 gave the best performance
  - Tuning  $\alpha_D$  down to 0.6 gave the most robust  $(\alpha_D, \alpha_G)$ -GAN
  - However, LSGAN significantly outperformed the  $(\alpha_D, \alpha_G)$ -GANs