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1. GAN Overview & Common Failures
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Generative Adversarial Networks (GANs)
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GAN: A Two Player Min-Max Game

Adversarial min-max game between Gθ and Dω

inf
θ∈Θ

sup
ω∈Ω

V (θ,ω)

Goodfellow et al. (2014) introduced (now called) the vanilla GAN

VVG(θ,ω) = EX∼Pr [logDω(X )] +EZ∼PZ
[log (1 −Dω(Gθ(Z)))]

Dω(x) is the probability that x is real, x ∈ X
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Vanilla GAN: Optimal Discriminator & Generator

VVG(θ,ω) = EX∼Pr [logDω(X )] +EZ∼PZ
[log (1 −Dω(Gθ(Z)))]

Assuming sufficiently large Ω and fixed Gθ, the discriminator Dω∗

optimizing the sup of VVG is given by

Dω∗(x) =
pr(x)

pr(x) + pGθ
(x)

Assuming sufficiently large Θ and optimal Dω∗ , the generator
optimizing the inf of VVG minimizes the Jensen-Shannon
Divergence between pr and pGθ

pr = pGθ
when ∀xDω(x) =

1
2
and DJS (pr∥pGθ

) = 0
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Failures of the Vanilla GAN

Although an elegant formulation, the vanilla GAN faces several
challenges that threaten its training stability

1 Exploding & vanishing gradients
2 Mode collapse
3 Model oscillation

We illustrate these challenges with toy examples
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Exploding & Vanishing Gradients

Cluster of generated data approaches real mode
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Exploding & Vanishing Gradients

Discriminator updates to estimate pr(x)/ (pr(x) + pGθ
(x))
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Exploding & Vanishing Gradients

Rightmost generated samples receive steep gradients which heavily
influence the next generator update
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Exploding & Vanishing Gradients

Generated data overshoots mode toward the Dω∗(x) ≈ 1 region

0 1 2 3 4 5 6 7

0

0.5

1

1.5

x

pr(x)

pGθ
(x)

Dω∗(x)

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023 11 / 69



Exploding & Vanishing Gradients

Discriminator updates with very confident predictions
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Exploding & Vanishing Gradients

Generated samples receive flat gradients, thus freezing Gθ
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Non-Saturating Vanilla GAN

To address exploding & vanishing gradients, Goodfellow et al. (2014)
proposed the non-saturating vanilla GAN 1

sup
ω∈Ω

VVG(θ,ω), inf
θ∈Θ

VNS
VG (θ,ω) ∶= EX∼PGθ

[logDω(X )]
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1First dual-objective GAN
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Mode Collapse

Generated data fits onto real mode
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Mode Collapse

Discriminator output is flat in dense pGθ
region
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Mode Collapse

Generator receives near-zero gradients from flat non-saturating (or
saturating) loss, thus appearing to “collapse” on the real mode
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Model Oscillation

Most generated data approach real mode, while some remain far away
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Model Oscillation

Discriminator confidently classifies “outlier” generated mode, gives
cautious predictions for remaining data
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Model Oscillation

Outlier data receive very steep gradients while local data receive
relatively flat gradients
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Model Oscillation

Generator prioritizes correcting the outlier data at the expense of
preserving the proximity of the local data
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Model Oscillation

Discriminator updates with confident predictions
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Model Oscillation

Generated samples receive steep gradients, which may lead to
oscillations around the real mode
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2. Formulating the (αD , αG)-GAN
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CPE Loss Function Perspective of GANs

Kurri et al. (2021) shows that V (θ,ω) can be expressed with a class
probability estimation (CPE) loss ℓ

V (θ,ω) = EX∼Pr [−ℓ(1,Dω(X ))] +EX∼PGθ
[−ℓ(0,Dω(X ))]

ℓ(y , ŷ) - any CPE loss
- ŷ ∈ [0,1] is a soft prediction of y ∈ {0,1}

Example: α-GAN [Kurri et al. (2021)] uses the CPE loss function
α-loss, α ∈ (0,1) ∪ (1,∞] [Sypherd et al. (2019)]:

ℓα(y , ŷ) =
α

α − 1
(1 − y ŷ

α−1
α − (1 − y)(1 − ŷ)

α−1
α )
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(αD , αG)-GAN: A Generalization of α-GAN

α-GAN uses value function Vα

Vα(θ,ω) = EX∼Pr [−ℓα(1,Dω(X ))] +EX∼PGθ
[−ℓα(0,Dω(X ))]

in the min-max game
inf
θ∈Θ

sup
ω∈Ω

Vα(θ,ω)

This formulation recovers a class of f -GANs that minimize the
Arimoto f -divergence 2

Fails to address GAN challenges due to overly-convex generator loss
with α < 1, or overconfident discriminator with α > 1

2Hellinger GAN (α = 1/2), Vanilla GAN (α = 1), Total Variation GAN (α =∞)
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(αD , αG)-GAN: A Generalization of α-GAN

Vα(θ,ω) = EX∼Pr [−ℓα(1,Dω(X ))] +EX∼PGθ
[−ℓα(0,Dω(X ))]

To address the GAN challenges, we introduce (αD , αG)-GAN

sup
ω∈Ω

VαD
(θ,ω), inf

θ∈Θ
VαG
(θ,ω)

Recovers α-GAN (αD = αG ) and vanilla GAN (αD , αG = 1)

Motivated by Goodfellow et al. (2014), we also introduce the
non-saturating (αD , αG)-GAN

sup
ω∈Ω

VαD
(θ,ω), inf

θ∈Θ
VNS
αG
(θ,ω) ∶= EX∼PGθ

[ℓαG
(1,Dω(X ))]
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Optimal Discriminator of (αD , αG)-GAN

Assuming a sufficiently large Ω and fixed Gθ, the discriminator Dω∗

optimizing the sup of VαD
is given by

Dω∗(x) =
pr(x)

αD

pr(x)αD + pGθ
(x)αD

Same optimal Dω for both saturating and non-saturating cases
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[Result 1] Discriminator Learns αD-Tilted Posterior

Theorem 1

The optimal (αD , αG)-GAN discriminator Dω∗ is equivalent to the
αD-tilted version of the true posterior P(Y = 1∣X ), namely PαD

(Y = 1∣X ).

Proof sketch:

The vanilla (1,1)-GAN discriminator learns P(Y = 1∣X ), the
probability that sample X ∼ 1

2Pr +
1
2PGθ

is real (Y = 1) or generated
(Y = 0), which is equivalent to Pr(X )/ (Pr(X ) + PGθ

(X ))

Using this equality, we can show that

PαD
(Y = 1∣X ) =

P(Y = 1∣X )αD

P(Y = 1∣X )αD + P(Y = 0∣X )αD

=
Pr(X )

αD

Pr(X )αD + PGθ
(X )αD

= Dω∗(x)
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[Result 1] Discriminator Learns αD-Tilted Posterior
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Generator Optimization of (αD , αG)-GAN
During backpropagation, the gradient vector ∂ℓ/∂x is computed for
each generated sample x in the batch

Interpretation: which direction and magnitude should x move in order
to reduce the generator loss?
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Generator Optimization of (αD , αG)-GAN
Our question: how would tuning (αD , αG) ∈ [0,∞)

2 influence this
gradient vector?

Our claim: Tuning αD and αG only affects the magnitude, not
direction, for both saturating/non-saturating (αD , αG)-GANs
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[Result 2] Impact of (αD , αG) on Saturating Loss

Theorem 2

Let x be a sample generated by Gθ and Dω∗ be optimal with respect to
VαD

. Then the direction of the saturating gradient
−∂ℓαG

(0,Dω∗(x)) /∂x is independent of αD and αG .

Proof sketch:

The saturating gradient can be simplified to

−
∂ℓαG

(0,Dω∗(x))

∂x
= CαD ,αG

(
1

pGθ
(x)

∂pGθ

∂x
−

1

pr(x)

∂pr
∂x
)

where CαD ,αG
is a scalar defined as

CαD ,αG
= αDPαD

(Y = 1∣X = x) (1 − PαD
(Y = 1∣X = x))1−1/αG
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[Result 2] Impact of (αD , αG) on Saturating Loss

Tuning αD < 1 increases gradient for samples far from real data
Tuning αG > 1 decreases gradient for samples close to real data
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[Result 2] Impact of (αD , αG) on Saturating Loss

Tuning αD < 1 helps combat vanishing gradients
Tuning αG > 1 helps combat exploding gradients
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[Result 3] Impact of (αD , αG) on Non-Saturating Loss

Theorem 3

Let x be a sample generated by Gθ and Dω∗ be optimal with respect to
VαD

. Then the direction of the non-saturating gradient
∂ℓαG

(1,Dω∗(x)) /∂x is independent of αD and αG .
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[Result 3] Impact of (αD , αG) on Non-Saturating Loss

Theorem 3

Let x be a sample generated by Gθ and Dω∗ be fixed and optimal with
respect to VαD

. Then the direction of the non-saturating gradient
∂ℓαG

(1,Dω∗(x)) /∂x is independent of αD and αG .

Proof sketch:

The non-saturating gradient can be simplified to

∂ℓαG
(1,Dω∗(x))

∂x
= CNS

αD ,αG
(

1

pGθ
(x)

∂pGθ

∂x
−

1

pr(x)

∂pr
∂x
)

where CNS
αD ,αG

is a scalar defined as

CNS
αD ,αG

= αD (1 − PαD
(Y = 1∣X = x))PαD

(Y = 1∣X = x)1−1/αG
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[Result 3] Impact of (αD , αG) on Non-Saturating Loss
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[Result 3] Impact of (αD , αG) on Non-Saturating Loss

Generator weight update with learning rate η

θ(i+1) ∶= θ(i) − η
∂ℓ

∂θ(i)

∶= θ(i) − η
1

∣X ∣
∑
x∈X

∂ℓ

∂x

∂x

∂θ(i)

∶= θ(i) − η
1

∣X ∣
∑
x∈X
[CNS

αD ,αG
(⋯)]

∂x

∂θ(i)

∶= θ(i) − (ηCNS
αD ,αG

)
1

∣X ∣
∑
x∈X
(⋯)

∂x

∂θ(i)

More accurately, ηCNS
αD ,αG

can be considered the gradient scalar
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[Result 3] Impact of (αD , αG) on Non-Saturating Loss

Tuning αD < 1 decreases (increases) gradients received by samples far
from (close to) real data: helps combat model oscillation
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[Result 3] Impact of (αD , αG) on Non-Saturating Loss

Tuning αG > 1 may immobilize samples very far from real data
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Advantages of Tuning (αD , αG)

Saturating (αD , αG)-GAN

Tuning αD < 1 helps combat vanishing gradients
Tuning αG > 1 helps combat exploding gradients

Non-saturating (αD , αG)-GAN

Tuning αD < 1 helps combat model oscillation
Tuning αG > 1 reduces the gradients received by outlier samples even
more, but may cause generator to ignore outliers
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3. Experiments & Summary of Results
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Overview of Experiments

GANs

Vanilla GAN (+ non-saturating)
(αD , αG)-GAN (+ non-saturating)
Least Squares GAN (LSGAN) [Mao et al. (2017)]

Datasets

2D Gaussian Mixture Ring [Srivastava et al. (2017)]
Celeb-A Image Dataset [Liu et al. (2015)]
LSUN Classroom Image Dataset [Yu et al. (2015)]

Hypothesis

Tuning αD < 1 and αG > 1 improves the training stability of
(αD , αG)-GAN
In particular, it robustifies the GAN training to random model weight
initializations
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[2D-Ring] Data Preparation

We draw samples from 8 equal-prior Gaussian distributions

Each mode i ∈ {1,2,⋯,8} has mean (cos(2πi/8), sin(2π/8)) and
variance 10−4

We generate 50k training samples and 25k testing samples

We also generate the same amount of 2D Gaussian noise vectors for
training/testing
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[2D-Ring] Model Architecture

Both Dω and Gθ networks have 4 fully-connected layers with 200 and
400 units, respectively

Discriminator Generator
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[2D-Ring] GANs & Hyperparameters

GANs

Vanilla GAN (+ non-saturating)
(αD , αG)-GAN (+ non-saturating)

(αD , αG) ∈ [0.5,1] × [0.9,1.2]

LSGAN with 0-1 binary coding scheme

inf
ω∈Ω

EX∼Pr [
1

2
(Dω(x) − 1)

2
] +EX∼PGθ

[
1

2
(Dω(x))

2
]

inf
θ∈Θ

EX∼PGθ
[
1

2
(Dω(x) − 1)

2
]

Hyperparameters

Adam optimization with learning rate 10−4

400 training epochs
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[2D-Ring] Evaluation Metrics

1 Mode coverage

Number of modes that contain a sample within three standard
deviations of its mean

2 High-quality samples

Percentage of samples that are within three standard deviations of any
modes’ mean

3 KL Divergence

Assign each real and generated sample to its closest mode
Creates two distributions (real/generated) across the 8 modes

We find that mode coverage reported over 200 seeds is the best
indicator of GAN training stability

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023 48 / 69



[2D-Ring] Quantitative Results

Table of saturating (αD , αG)-GAN success rates

% of success

(8/8 modes)

αD

0.5 0.6 0.7 0.8 0.9 1.0

αG

0.9 73 79 69 60 46 34

1.0 80 79 74 68 54 47

1.1 79 77 68 70 59 47

1.2 75 74 71 65 57 46

Top 4 results emboldened, vanilla GAN

αD < 1 has more impact than αG > 1
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[2D-Ring] Quantitative Results

Table of saturating (αD , αG = 1)-GAN failure rates

% of failure

(0/8 modes)

αD

0.5 0.6 0.7 0.8 0.9 1.0

αG

0.9 11 10 12 13 29 49

1.0 5 5 7 8 16 30

1.1 7 9 13 12 13 26

1.2 9 5 9 12 17 31

Top 3 results emboldened, vanilla GAN

αD < 1 has more impact than αG > 1
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[2D-Ring] Quantitative Results

Plot of saturating (αD ,1)-GAN results
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[2D-Ring] Qualitative Results

Saturating: Vanilla (1,1)-GAN vs. (0.2,1)-GAN
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[2D-Ring] Quantitative Results

Table of non-saturating (αD , αG)-GAN success rates

% of success

(8/8 modes)

αD

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

αG

0.8 35 24 19 19 14 16 18 10

0.9 39 37 19 22 16 20 19 21

1.0 34 35 29 28 26 22 20 32

1.1 40 36 31 22 24 15 23 25

1.2 45 38 34 25 26 28 20 22

1.3 44 39 26 28 28 25 31 29

Top 5 results emboldened, vanilla GAN

LSGAN success rate: 33%

αD < 1 and αG > 1 both improve performance
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[2D-Ring] Qualitative Results

Non-Saturating: Vanilla (1,1)-GAN vs. (0.5,1.2)-GAN vs. LSGAN
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[Celeb-A] Data Preparation

Celeb-A Dataset: collection of ≈ 200k celebrity headshots

Resize & center crop all images to size 64 × 64

Generate ≈ 200k Gaussian noise vectors of size 100

80%-20% train-validation split for both images & noise vectors
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[Celeb-A] Model Architecture

Deep Convolutional GAN (DCGAN) [Radford et al. (2015)]

Input: 3x64x64

Conv: 32x32@8

Conv: 16x16@16

Conv: 8x8@32

Conv: 4x4@64

Flatten Lin: 1024x1

Output: 1x1

Output: 3x64x64

Noise: 1x100

Lin: 100x1024 Reshape

Deconv: 8x8@32 Deconv: 16x16@16

Deconv: 32x32@8

Deconv: 64x64@3

Discriminator

Generator
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[Celeb-A] GANs & Hyperparameters

GANs

Non-saturating vanilla GAN
Non-Saturating (αD , αG)-GAN

(αD , αG) ∈ [0.5,1] × {1}

LSGAN with 0-1 binary coding scheme

Hyperparameters

Adam optimization with learning rates ∈ [10−4,10−3]
Number of train epochs ∈ {10,20,⋯,100}
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[Celeb-A] Evaluation Metrics

Fréchet Inception Distance (FID) [Heusel et al. (2017)] averaged
over 50 seeds

FID = ∥µr − µg∥
2 +Tr(Σr +Σg − 2 (ΣrΣg)

1/2
)
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[Celeb-A] Quantitative Results

Plot of mean FID over learning rate for 6 (αD ,1)-GANs and LSGAN
αD = 0.6 appears to be most robust to learning rate
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[Celeb-A] Quantitative Results

Log-scale plot of mean FID over epoch for three GANs and two
learning rates: αD = 0.6 appears to converge over time
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[Celeb-A] Qualitative Results

Generated samples across 8 seeds for three GANs trained with
5 × 10−4 learning rate for 100 epochs

(0.6,1)-GAN and LSGAN appear to be most stable & highest quality
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[LSUN Classroom] Data Preparation

LSUN Classroom Dataset: collection of ≈ 170k classroom images

Resize & center crop all images to size 112 × 112

Generate ≈ 170k Gaussian noise vectors of size 100

80%-20% train-validation split for both images & noise vectors
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[LSUN Classroom] Model Architecture

Deep Convolutional GAN (DCGAN)

Input: 3x112x112

Conv: 56x56@8

Conv: 28x28@16

Conv: 14x14@32

Conv: 7x7@64

Flatten Lin: 3136x1

Output: 1x1

Output: 3x112x112

Noise: 1x100

Lin: 100x3136 Reshape

Deconv: 14x14@32 Deconv: 28x28@16

Deconv: 56x56@8

Deconv: 112x112@3

Discriminator

Generator
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[LSUN Classroom] GANs & Hyperparameters

GANs

Non-saturating vanilla GAN
Non-Saturating (αD , αG)-GAN

(αD , αG) ∈ [0.5,1] × {1}

LSGAN with 0-1 binary coding scheme

Hyperparameters

Adam optimization with learning rates ∈ [10−4,10−3]
Number of train epochs ∈ {10,20,⋯,100}
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[LSUN Classroom] Evaluation Metrics

Fréchet Inception Distance (FID) averaged over 50 seeds

FID = ∥µr − µg∥
2 +Tr(Σr +Σg − 2 (ΣrΣg)

1/2
)
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[LSUN Classroom] Quantitative Results

Plot of mean FID over learning rate for 6 (αD ,1)-GANs and LSGAN
Tuning αD < 1 is more robust to learning rate, but LSGAN greatly
outperforms all tested (αD , αG)-GANs
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[LSUN Classroom] Quantitative Results

Log-scale plot of mean FID over epoch for three GANs and two
learning rates: vanilla GAN extremely sensitive to learning rate
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[LSUN Classroom] Qualitative Results

Generated samples across 8 seeds for three GANs trained with
2 × 10−4 learning rate for 100 epochs

(0.6,1)-GAN and LSGAN are much more stable than vanilla GAN
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Summary of Results

2D-ring (saturating)

Vanilla GAN showed instability due to exploding & vanishing gradients
Tuning αD down to 0.3 decreased failure rate 30%→ 2%
Tuning αG had no significant impact on stability

2D-ring (non-saturating)

Tuning αD down to 0.5 and αG up to 1.2 doubled success rate
compared to vanilla GAN (22%→ 45%)
(0.5,1.2)-GAN performed more stable than LSGAN (45% vs. 33%)

Celeb-A

Fixing αG = 1 gave the best performance
Tuning αD down to 0.6 gave the most robust GAN to learning rate

LSUN Classroom

Fixing αG = 1 gave the best performance
Tuning αD down to 0.6 gave the most robust (αD , αG)-GAN
However, LSGAN significantly outperformed the (αD , αG)-GANs
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