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Thesis Outline

@ GAN Overview & Common Failures
@ Formulating the (ap, ag)-GAN
© Experiments & Summary of Results

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023 2/69



1. GAN Overview & Common Failures
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GAN: A Two Player Min-Max Game

@ Adversarial min-max game between Gy and D,

inf sup V(6,w)

0€O ,ecQ

e Goodfellow et al. (2014) introduced (now called) the vanilla GAN
Wie(0,w) =Ex.p,[log Du(X)] +Ez.p,[log (1 - Du(Go(2)))]

D,,(x) is the probability that x is real, x € X
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Vanilla GAN: Optimal Discriminator & Generator

We (0, w) = Ex.p,[log D,(X)] +Ez.p,[log (1 - D.(Gy(2)))] J

@ Assuming sufficiently large © and fixed Gy, the discriminator D+
optimizing the sup of W is given by

_ pr(x)
B ()= 000 + pey (0

@ Assuming sufficiently large © and optimal D+, the generator
optimizing the inf of V¢ minimizes the Jensen-Shannon
Divergence between p, and pg,

e p; = pg, when VD, (x) =3 and Dys (p,|pg,) =0
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Failures of the Vanilla GAN

@ Although an elegant formulation, the vanilla GAN faces several
challenges that threaten its training stability

@ Exploding & vanishing gradients
@ Mode collapse
© Model oscillation

@ We illustrate these challenges with toy examples
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Exploding & Vanishing Gradients

o Cluster of generated data approaches real mode
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Exploding & Vanishing Gradients

e Discriminator updates to estimate p,(x)/ (pr(x) + pg,(x))

pr(x)
1| - PG,,(X)
D+ (x)
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Exploding & Vanishing Gradients

@ Rightmost generated samples receive steep gradients which heavily
influence the next generator update

1 ~ T T
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Exploding & Vanishing Gradients

o Generated data overshoots mode toward the D, (x) ~ 1 region

1.5) pr(x) .
— PGQ(X)
Dw* (X)
1 [
05 8
0
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Exploding & Vanishing Gradients

@ Discriminator updates with very confident predictions

1.5] pr(x) .
— PG, (X)
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Exploding & Vanishing Gradients

@ Generated samples receive flat gradients, thus freezing Gy
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Non-Saturating Vanilla GAN

e To address exploding & vanishing gradients, Goodfellow et al. (2014)
proposed the non-saturating vanilla GAN !

sup VVG(eaw)’ inf V\'/\IGS(H’W) = EXNPG [Iog DW(X)]
we 0e® ’
10 ‘ ‘ ‘ ‘
— log(1 - D, (x)) (saturating)
5/ |--- —log Dy(x) (non-saturating) ||
0 ——————————————————————— -
5|
-10 ‘ |

| |
0 0.2 0.4 0.6 0.8 1
D,,(x)

First dual-objective GAN
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Mode Collapse

@ Generated data fits onto real mode
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Mode Collapse

@ Discriminator output is flat in dense pg, region

1.5 I
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Mode Collapse

@ Generator receives near-zero gradients from flat non-saturating (or
saturating) loss, thus appearing to “collapse” on the real mode
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Model Oscillation

@ Most generated data approach real mode, while some remain far away

1 ‘ ‘
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Model Oscillation

@ Discriminator confidently classifies “outlier” generated mode, gives
cautious predictions for remaining data

1 T T I
pr(x)
0.8||— pg,(x) |
Do+ (x)
06/

AR

1 2 3 4 5 6
X

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023 19 /69




Model Oscillation

@ Outlier data receive very steep gradients while local data receive
relatively flat gradients
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Model Oscillation

o Generator prioritizes correcting the outlier data at the expense of
preserving the proximity of the local data

15] pr(x) ||
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Model Oscillation

@ Discriminator updates with confident predictions
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Model Oscillation

@ Generated samples receive steep gradients, which may lead to
oscillations around the real mode
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2. Formulating the (ap,a¢)-GAN
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CPE Loss Function Perspective of GANs

e Kurri et al. (2021) shows that V/(#,w) can be expressed with a class
probability estimation (CPE) loss ¢

V(6,w) = Exep, [~£(1, Du(X))] + Exepg, [~£(0, Du(X))] |

e /(y,y) - any CPE loss
- y€[0,1] is a soft prediction of y € {0,1}
e Example: a-GAN [Kurri et al. (2021)] uses the CPE loss function
a-loss, € (0,1) U (1,00] [Sypherd et al. (2019)]:

[eaw) - (1-y T - (1-y)(1-9)F) ]

o
a-1
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(ap,ag)-GAN: A Generalization of a-GAN

@ a-GAN uses value function V,,

Va(0,w) = Ex.p,[-€a(1, Du(X))] + EXNPGG [-£a(0, Dy (X))] J

in the min-max game
|nf sup V,(0,w)

€0 e

@ This formulation recovers a class of f-GANs that minimize the
Arimoto f-divergence 2

o Fails to address GAN challenges due to overly-convex generator loss
with a < 1, or overconfident discriminator with o > 1

Hellinger GAN (a = 1/2), Vanilla GAN (a = 1), Total Variation GAN (a = o0)
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(ap,ag)-GAN: A Generalization of a-GAN

Va(eaw) = ]EXNP,[_Ea(la Dw(X))] + H'ZXNPGG [_Ea(oa Dw(X))] J

@ To address the GAN challenges, we introduce (ap, ag)-GAN

sup Vo, (0,w), inf Vi (6,w)
weQ 0

@ Recovers a-GAN (ap = ag) and vanilla GAN (ap,ag =1)

e Motivated by Goodfellow et al. (2014), we also introduce the
non-saturating (ap,ag)-GAN

sup Vo, (0,0),  inf VI2(0,w) := Ex.p [lac (1, Du(X))]
we) 0e© 0
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Optimal Discriminator of (ap,ag)-GAN

@ Assuming a sufficiently large Q and fixed Gy, the discriminator D«
optimizing the sup of V,,, is given by

pr(x)*P

D+ (x) = P ()% + pe, (x)°0

@ Same optimal D,, for both saturating and non-saturating cases
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[Result 1] Discriminator Learns ap-Tilted Posterior

The optimal (ap, ag)-GAN discriminator D,+ is equivalent to the
ap-tilted version of the true posterior P(Y =1|X), namely P,,(Y =1|X).
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[Result 1] Discriminator Learns ap-Tilted Posterior

The optimal (ap, ag)-GAN discriminator D,+ is equivalent to the
ap-tilted version of the true posterior P(Y =1|X), namely P,,(Y =1|X).

Proof sketch:
@ The vanilla (1,1)-GAN discriminator learns P(Y = 1|X), the
probability that sample X ~ %Pr + %P(;e is real (Y =1) or generated
(Y =0), which is equivalent to P,(X)/(P-(X) + Pg, (X))

@ Using this equality, we can show that

P(Y =1]X)o0
P(Y =1|X)e0 + P(Y =0|X)20
_ P.(X)>P

~ P.(X)D + Pg, (X)op

Po, (Y =1|X) =

= Dy (x)
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Discriminator Learns ap-Tilted Posterior

0.2 I I I I I

Kyle (ASU) Tunable Dual-Objective GANs



Generator Optimization of (ap,ag)-GAN

e During backpropagation, the gradient vector 9¢/0x is computed for
each generated sample x in the batch

o Interpretation: which direction and magnitude should x move in order
to reduce the generator loss?

O
(@)
g O
ﬁ O
@) or & <
£ N . O
<@>
[
O
(@)
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Generator Optimization of (ap,ag)-GAN

e Our question: how would tuning (ap,ag) € [0, 0)? influence this
gradient vector?

O
(@)
g O
o o
@) or & <
T N . O
<@>
K9
O
(@)
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Generator Optimization of (ap,ag)-GAN

e Our question: how would tuning (ap,ag) € [0, 0)? influence this
gradient vector?

O
(@)
g O
o o
@) or & <
T N . O
<@>
K9
O
(@)

@ Our claim: Tuning ap and ag only affects the magnitude, not
direction, for both saturating/non-saturating (ap, ac)-GANs
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[Result 2] Impact of (ap,ag) on Saturating Loss

Let x be a sample generated by Gy and D, be optimal with respect to
V- Then the direction of the saturating gradient
-0l (0, Dy+(x)) /Ox is independent of ap and ag.
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[Result 2] Impact of (ap,ag) on Saturating Loss

Let x be a sample generated by Gy and D, be optimal with respect to
V- Then the direction of the saturating gradient

-0l (0, Dy+(x)) /Ox is independent of ap and ag.

Proof sketch:

@ The saturating gradient can be simplified to

_c%ac (0,Dy+(x)) c
ox -

pe,(x) Ox  pr(x) Ox

ap,xg

( 1 8PG9 1 8pr)

where Gy, o is a scalar defined as

Caparg = 0D Pap (Y = 1|X =x) (1= Pay (Y = 1|X = x)) 7
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[Result 2] Impact of (ap,ag) on Saturating Loss

@ Tuning ap < 1 increases gradient for samples far from real data
@ Tuning ag > 1 decreases gradient for samples close to real data

CCMD,O{G
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[Result 2| Impact of (ap, ) on Saturating Loss

@ Tuning ap <1 helps combat vanishing gradients

@ Tuning ag > 1 helps combat exploding gradients
1

‘ 4606‘ (O> Dw* (I))
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[Result 3] Impact of (ap,ag) on Non-Saturating Loss

Let x be a sample generated by Gy and D, be optimal with respect to
Viap- Then the direction of the non-saturating gradient
O0la (1, D+ (x)) /Ox is independent of ap and ag.
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[Result 3] Impact of (ap,ag) on Non-Saturating Loss

Let x be a sample generated by Gy and D,+ be fixed and optimal with
respect to V,,. Then the direction of the non-saturating gradient
O (1, D4+ (x)) /Ox is independent of ap and ag.

Proof sketch:

@ The non-saturating gradient can be simplified to

Olog (1, Dy (x)) - cNs ( 1 9dpg, 1 aF’r)

Ox -6\ pg,(x) Ox  pr(x) Ox

NS . .
where C; >, is a scalar defined as

CNS :aD(l—PaD(Y:1|X:X))Pao(y:1|X:X)171/aG

ap,oG
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[Result 3] Impact of (ap,ag) on Non-Saturating Loss

ap,&G

Kyle (ASU)
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[Result 3] Impact of (ap,ag) on Non-Saturating Loss

ap,&G

(ap,ag) = (1,1)

(aD,a(;) = (0.8, ].)
(ap,ac) =(0.6,1)
(ap,ag) =(0.6,1.2)

(ap,ag) =(0.6,2) ||

0.2

|
0.4

|
0.6 0.8

P(Y =1|X)

@ Can't we just decrease the learning rate for smaller gradients?
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[Result 3] Impact of (ap, ) on Non-Saturating Loss

@ Generator weight update with learning rate 7

; : or
(i+1) ._ (i) _ Y
0 =0 7)89(/)
1 o¢ Ox
|x| %539@
=) _
,r’|X| Z [ C!D,C!G( )] 89()

xeX

. (i _ NS
=0 ( CaD:aG)|X|Z( )89()

=) _

@ More accurately, nC('X\'DsaG can be considered the gradient scalar
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[Result 3] Impact of (ap,ag) on Non-Saturating Loss

@ Tuning ap < 1 decreases (increases) gradients received by samples far
from (close to) real data: helps combat model oscillation

1 | | |
(ap,ag)=(1,1),n=1
0.8 (ap,a6) = (1,1), =06 ||
— (ap,ag) =(0.6,1),7=1
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[Result 3] Impact of (ap, ) on Non-Saturating Loss

@ Tuning ag > 1 may immobilize samples very far from real data

25

15F

E(m(lv Dw* (:Z:))

05
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Advantages of Tuning (ap, ag)

e Saturating (ap,ag)-GAN
e Tuning ap <1 helps combat vanishing gradients
e Tuning a¢ > 1 helps combat exploding gradients
e Non-saturating (ap,ag)-GAN

e Tuning ap < 1 helps combat model oscillation
e Tuning ag > 1 reduces the gradients received by outlier samples even
more, but may cause generator to ignore outliers
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3. Experiments & Summary of Results

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023 43 /69



Overview of Experiments

@ GANs

e Vanilla GAN (4 non-saturating)
o (ap,ag)-GAN (+ non-saturating)
o Least Squares GAN (LSGAN) [Mao et al. (2017)]
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Overview of Experiments

e GANs
e Vanilla GAN (4 non-saturating)
o (ap,ag)-GAN (+ non-saturating)
o Least Squares GAN (LSGAN) [Mao et al. (2017)]
@ Datasets
o 2D Gaussian Mixture Ring [Srivastava et al. (2017)]
o Celeb-A Image Dataset [Liu et al. (2015)]
o LSUN Classroom Image Dataset [Yu et al. (2015)]
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Overview of Experiments

e GANs
e Vanilla GAN (4 non-saturating)
o (ap,ag)-GAN (+ non-saturating)
o Least Squares GAN (LSGAN) [Mao et al. (2017)]
@ Datasets
o 2D Gaussian Mixture Ring [Srivastava et al. (2017)]
o Celeb-A Image Dataset [Liu et al. (2015)]
o LSUN Classroom Image Dataset [Yu et al. (2015)]
@ Hypothesis
e Tuning ap <1 and ag > 1 improves the training stability of
(ap,ac)-GAN
e In particular, it robustifies the GAN training to random model weight
initializations
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Data Preparation

@ We draw samples from 8 equal-prior Gaussian distributions

@ Each mode i€ {1,2,---,8} has mean (cos(27i/8),sin(27/8)) and
variance 107

@ We generate 50k training samples and 25k testing samples

@ We also generate the same amount of 2D Gaussian noise vectors for
training/testing
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odel Architecture

@ Both D, and Gy networks have 4 fully-connected layers with 200 and
400 units, respectively

Discriminator Generator

(]

2 —»200 —»200 —200 =200 > 1 —» o 2 —>» 400 —» 400 —» 400 —> 400 —> 2
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GANSs & Hyperparameters

o GANs

e Vanilla GAN (4 non-saturating)
o (ap,ag)-GAN (+ non-saturating)
] (aD,aG) € [0.57 1] X [0.9,1.2]
e LSGAN with 0-1 binary coding scheme

s [30.00-27] 5 [F0

inf Ex-pg, |5 (D) - 1)?]

@ Hyperparameters

o Adam optimization with learning rate 107*
e 400 training epochs
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Evaluation Metrics

©@ Mode coverage
o Number of modes that contain a sample within three standard
deviations of its mean
@ High-quality samples
o Percentage of samples that are within three standard deviations of any
modes’ mean

© KL Divergence

o Assign each real and generated sample to its closest mode
o Creates two distributions (real/generated) across the 8 modes

@ We find that mode coverage reported over 200 seeds is the best
indicator of GAN training stability
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Quantitative Results

@ Table of saturating (ap, ag)-GAN success rates

% of success ap
(8/8 modes) | 0.5 0.6 0.7 08 09 1.0

00 |73 |79 |69 | 60 | 46 | 34
10 |80 |79 |74 |68 |54 |47
11 79 | 77 |68 | 70 | 59 | 47
12 |75 |74 |71 |65 | 57 | 46

@ Top 4 results emboldened, vanilla GAN

@ ap <1 has more impact than ag > 1
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Quantitative Results

@ Table of saturating (ap,ag = 1)-GAN failure rates

% of failure ap

(0/8 modes) | 0.5 0.6 0.7 08 09 1.0
0.9 11 |10 |12 |13 | 29 | 49
1.0 5 5 7 38 16 | 30

ag
1.1 7 9 13 |12 | 13 | 26
1.2 9 5 9 12 | 17 | 31

@ Top 3 results emboldened, vanilla GAN

@ ap <1 has more impact than ag > 1
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Quantitative Results

@ Plot of saturating («ap,1)-GAN results
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Qualitative Results

e Saturating: Vanilla (1,1)-GAN vs. (0.2,1)-GAN
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Quantitative Results

@ Table of non-saturating (ap, ag)-GAN success rates

% of success ap

(8/8 modes) | 05 06 07 08 09 10 11 12
0.8 35124 |19 |19 | 14 | 16 | 18 | 10
0.9 39 | 37 | 19 | 22 |16 | 20 | 19 | 21
1.0 34 | 35 | 29 | 28 | 26 | 22 | 20 | 32

@e 1.1 40 | 36 | 31 | 22 | 24 | 15 | 23 | 25
1.2 45 | 38 | 34 | 25 | 26 | 28 | 20 | 22
1.3 44 | 39 | 26 | 28 | 28 | 25 | 31 | 29

@ Top 5 results emboldened, vanilla GAN
@ LSGAN success rate: 33%

@ ap <1 and ag > 1 both improve performance
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Qualitative Results

e Non-Saturating: Vanilla (1,1)-GAN vs. (0.5,1.2)-GAN vs. LSGAN

Seed 1 Seed 2
=1/ 4 . 8
aG = y \
w=05 =,
ag=12 = A
L /
LSGAN = 8
» /’f . . o
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[Celeb-A] Data Preparation

Celeb-A Dataset: collection of ~ 200k celebrity headshots

o LEE

Resize & center crop all images to size 64 x 64

Generate ~ 200k Gaussian noise vectors of size 100

80%-20% train-validation split for both images & noise vectors

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023



[Celeb-A]l Model Architecture

@ Deep Convolutional GAN (DCGAN) [Radford et al. (2015)]

Noise: 1x100

Lin: 100x1024

Discriminator

N

Conv: 32x32@8

c: 16
LN

Conv: 8x8@32

Conv: 4x4@64 [ ]

(Deconv: 8xe@32 Deconv: 16x16@16)

Deconv: 32x32@8

Deconv: 64x64@3

Generator

(Fiatien [Lir{: 1024x1)

Output: 3x64x64

Output: 1x1
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[Celeb-A] GANs & Hyperparameters

@ GANs

e Non-saturating vanilla GAN
o Non-Saturating (ap, ag)-GAN

o (ap,ac) €[05,1] x {1}
e LSGAN with 0-1 binary coding scheme
@ Hyperparameters

o Adam optimization with learning rates € [107%,1073]
o Number of train epochs € {10,20,---,100}

Kyle (ASU) Tunable Dual-Objective GANs June 9, 2023



[Celeb-A] Evaluation Metrics

o Fréchet Inception Distance (FID) [Heusel et al. (2017)] averaged
over 50 seeds

Real images (test)

Real feature vectors

—

_—r

InceptionNet-V3

Generated images (test)

Generated feature vectors

o FID = |1, — pig|? + Tr (X, + g -2 (%, 55)"?)
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[Celeb-A] Quantitative Results

@ Plot of mean FID over learning rate for 6 (ap,1)-GANs and LSGAN
@ ap = 0.6 appears to be most robust to learning rate
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[Celeb-A] Quantitative Results

@ Log-scale plot of mean FID over epoch for three GANs and two

learning rates: ap = 0.6 appears to converge over time
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Qualitative Results

@ Generated samples across 8 seeds for three GANSs trained with
5 x 107* learning rate for 100 epochs

@ (0.6,1)-GAN and LSGAN appear to be most stable & highest quality

ap=1
ag=1

ap = 0.6
ag=1

LSGAN
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[LSUN Classroom| Data Preparation

o LSUN Classroom Dataset: collection of ~ 170k classroom images

@ Resize & center crop all images to size 112 x 112
@ Generate ~ 170k Gaussian noise vectors of size 100

@ 80%-20% train-validation split for both images & noise vectors
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[LSUN Classroom] Model Architecture

@ Deep Convolutional GAN (DCGAN)

Noise: 1x100

Discriminator
Input: 3x112x112

N

Conv: 56x56@8

'II;\
114

[peconv: 14x14@32 Deconv: 28x28@16)

Deconv: 56x56@8

(Decon: 112x11283]

Output: 3x112x112

(Fiatien L 3136x1 )

Generator

Output: 1x1
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[LSUN Classroom| GANs & Hyperparameters

@ GANs

e Non-saturating vanilla GAN
o Non-Saturating (ap, ag)-GAN

o (ap,ac) €[05,1] x {1}
e LSGAN with 0-1 binary coding scheme
@ Hyperparameters

o Adam optimization with learning rates € [107%,1073]
o Number of train epochs € {10,20,---,100}
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[LSUN Classroom]| Evaluation Metrics

@ Fréchet Inception Distance (FID) averaged over 50 seeds

Real images (test)

Real feature vectors

—

_—r

InceptionNet-V3

Generated images (test)

Generated feature vectors

o FID = 11, - pg |+ Tr (X, + g - 2(5,55) ")
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[LSUN Classroom| Quantitative Results

@ Plot of mean FID over learning rate for 6 (ap,1)-GANs and LSGAN
@ Tuning ap < 1 is more robust to learning rate, but LSGAN greatly
outperforms all tested (ap,ag)-GANs
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[LSUN Classroom| Quantitative Results

@ Log-scale plot of mean FID over epoch for three GANs and two
learning rates: vanilla GAN extremely sensitive to learning rate
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[LSUN Classroom| Qualitative Results

@ Generated samples across 8 seeds for three GANs trained with
2 x 107* learning rate for 100 epochs

@ (0.6,1)-GAN and LSGAN are much more stable than vanilla GAN

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Real
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Summary of Results

@ 2D-ring (saturating)

e Vanilla GAN showed instability due to exploding & vanishing gradients
e Tuning ap down to 0.3 decreased failure rate 30% — 2%
e Tuning a¢ had no significant impact on stability
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Summary of Results

@ 2D-ring (saturating)
e Vanilla GAN showed instability due to exploding & vanishing gradients
e Tuning ap down to 0.3 decreased failure rate 30% — 2%
e Tuning a¢ had no significant impact on stability
@ 2D-ring (non-saturating)
e Tuning ap down to 0.5 and a¢ up to 1.2 doubled success rate
compared to vanilla GAN (22% — 45%)
o (0.5,1.2)-GAN performed more stable than LSGAN (45% vs. 33%)

o Celeb-A

e Fixing ag = 1 gave the best performance
e Tuning ap down to 0.6 gave the most robust GAN to learning rate

@ LSUN Classroom

e Fixing ag = 1 gave the best performance
e Tuning ap down to 0.6 gave the most robust (ap, ag)-GAN
o However, LSGAN significantly outperformed the (ap,ag)-GANs
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