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ABSTRACT

Generative Adversarial Networks (GANs) have emerged as a powerful framework for

generating realistic and high-quality data. In the original “vanilla” GAN formulation,

two models – the generator and discriminator – are engaged in a min-max game,

where they optimize the same value function of binary cross entropy loss. Despite

offering an intuitive approach, vanilla GANs often face training stability challenges

such as exploding and vanishing gradients, mode collapse, and model oscillation.

Addressing these common failures, recent work has proposed the use of tunable

classification losses in place of traditional value functions, given the role of the

discriminator as a classifier. Although parameterized robust loss families, e.g. α-loss,

have shown promising characteristics as value functions, this thesis argues that the

generator and discriminator require separate objective functions to achieve their

different goals. As a result, this thesis introduces the (αD, αG)-GAN, a parameterized

class of dual-objective GANs, as an alternative approach to the standard vanilla GAN.

The (αD, αG)-GAN formulation, inspired by α-loss, allows practitioners to tune

the parameters (αD, αG) ∈ [0,∞)2 to provide a more stable training process. The

objectives for the generator and discriminator in (αD, αG)-GAN are derived, and the

advantages of using these objectives are investigated. In particular, the optimization

trajectory of the generator is found to be influenced by the choice of αD and αG.

Empirical evidence is presented through experiments conducted on various datasets,

including the 2D Gaussian Mixture Ring, Celeb-A image dataset, and LSUN Classroom

image dataset. Performance metrics such as mode coverage and Fréchet Inception

Distance (FID) are used to evaluate the effectiveness of the (αD, αG)-GAN compared to

the vanilla GAN and state-of-the-art Least Squares GAN (LSGAN). The experimental
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results demonstrate that tuning αD < 1 leads to improved stability, robustness to

hyperparameter choice, and competitive performance compared to LSGAN.

This research contributes to advancing the field of GANs by addressing the

limitations of vanilla GANs and providing theoretical insight and empirical evidence

for the improved training stability of (αD, αG)-GAN. The findings of this thesis offer

valuable insights for generating more realistic synthetic data and have the potential

to drive further advancements in GAN architectures and training methodologies.

ii



DEDICATION

In loving memory of Calli, my sweet golden retriever, whose playful spirit and

unwavering love brought warmth and happiness to everyone around her.

iii



ACKNOWLEDGMENTS

I would like to acknowledge the Sankar Lab of Arizona State University for their

valuable contributions to this thesis. This research builds upon their recent work, and I

am grateful for their efforts. Special thanks go to Dr. Lalitha Sankar, Monica Welfert,

and Dr. Gowtham Kurri for their guidance, support, and collaboration throughout

the project. I am also grateful to the National Science Foundation (NSF) for their

financial support, provided through grants CIF-1901243, CIF-1815361, CIF-2007688,

CIF-2134256, SaTC-2031799, and SCH-2205080. These grants have played a crucial

role in funding the lab’s activities and enabling the research presented in this thesis.

I would like to acknowledge the insightful discussions and feedback from my adviser,

colleagues, and friends, which have greatly influenced the development of this work.

Lastly, I would like to express my appreciation to my family for their support and

belief in me throughout my academic journey. I extend my sincere thanks to all those

mentioned above and anyone else who has contributed in any way.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THE FAILURES OF VANILLA GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Vanilla GAN Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Exploding & Vanishing Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Mode Collapse & Model Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 FORMULATING THE (αD, αG)-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 (αD, αG)-GAN: A Dual-Objective Generalization of α-GAN . . . . . . 10

3.2 Analysis of (αD, αG)-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 The Saturating (αD, αG)-GAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 The Non-Saturating (αD, αG)-GAN . . . . . . . . . . . . . . . . . . . . . . . 18

4 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 2D Gaussian Mixture Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Celeb-A & LSUN Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Celeb-A Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 LSUN Classroom Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

APPENDIX

A THEOREM PROOFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B EXPERIMENT DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



LIST OF TABLES

Table Page

1. Percentage out of 50 Seeds of FID Scores Below 80 (Celeb-A) or 800 (LSUN

Classroom) for Each Combination of (αD, αG)-GAN and Learning Rate,

Trained for 100 Epochs. Best Results for Each Dataset and Learning Rate

are Emboldened. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2. Success Rates for 2D-Ring With the Saturating (αD, αG)-GAN Over 200

Seeds, With Top 4 Combinations Emboldened. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3. Failure Rates for 2D-Ring With the Saturating (αD, αG)-GAN Over 200

Seeds, With Top 3 Combinations Emboldened. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Success Rates for 2D-Ring With the Non-Saturating (αD, αG)-GAN Over

200 Seeds, With Top 5 Combinations Emboldened. . . . . . . . . . . . . . . . . . . . . . . . . 39

5. Discriminator and Generator Architectures for Celeb-A Dataset. . . . . . . . . . . . . 40

6. Discriminator and Generator Architectures for LSUN Classroom Dataset. . . . 40

vi



LIST OF FIGURES

Figure Page

1. A Simple Depiction of a Generative Adversarial Network (GAN). The Gener-

ator Model Aims to Produce Synthetic Samples That Trick the Discriminator

Model Into Classifying Them as Real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. The GAN Architecture Consists of a Generator Network Gθ and Discrimi-

nator Network Dω Engaged in an Adversarial Game. . . . . . . . . . . . . . . . . . . . . . . 5

3. An Illustration of Three Common GAN Failures – (a) Exploding and

Vanishing Gradients, (b) Mode Collapse, and (c) Model Oscillation – over 4

Points in Training Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. A Toy Example with a Real Distribution Pr = N (−2, 0.52) (Blue) and Gen-

erated Distribution PGθ
= N (2, 0.52) (Orange).The Optimal Discriminator

Output Dω∗(x) in (3.7) is Plotted for Several Values of αD ≤ 1. . . . . . . . . . . . . 14

5. (a) Plot of the Gradient Scalar CαD,αG
Defined in (3.12) over the True

Posterior P (Y = 1|X) for Five Different Saturating (αD, αG)-GANs. (b)

Plot of the Gradient Scalar CNS
αD,αG

Defined in (3.14) over the True Posterior

P (Y = 1|X) for Five Different Non-Saturating (αD, αG)-GANs. . . . . . . . . . . . . 16

6. (a) Plot of the Saturating Generator Loss −ℓαG
(0, Dω∗(x)) for Several

Values of αD ≤ 1, αG ≥ 1. (b) Plot of the Non-Saturating Generator Loss

ℓαG
(1, Dω∗(x)) for Several Values of αD ≤ 1, αG ≥ 1. . . . . . . . . . . . . . . . . . . . . . . 19

7. Plot of Mode Coverage Over Epochs for Saturating (αD, 1)-GAN With

αD ∈ {0.2, 1}. Placed Above This Plot are 2D Visuals of the Generated

Samples (in Black) at Different Epochs, and the Discriminator Outputs are

Illustrated as Heat Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



Figure Page

8. (a) Plot of Success and Failure Rates Over 200 Seeds for the Saturating

(αD, 1)-GAN With αD ∈ [0.2, 1] Trained on the 2D-Ring Dataset.(b) Gener-

ated 2D-Ring Samples From the Vanilla GAN, (0.5, 1.2)-GAN, and LSGAN

Over 6 Seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9. (a) Plot of Celeb-A FID Scores Averaged Over 50 Seeds for 8 Different

Learning Rates and 7 Different GANs Trained for 100 Epochs. (b) Plot

of LSUN Classroom FID Scores Averaged Over 50 Seeds for 5 Different

Learning Rates and 7 Different GANs Trained for 100 Epochs. . . . . . . . . . . . . 26

10. Generated Celeb-A Faces From the Same Three GANs Over 8 Seeds When

Trained for 100 Epochs With a Learning Rate of 5× 10−4. . . . . . . . . . . . . . . . . 27

11. (a) Log-Scale Plot of Celeb-A FID Scores Over Training Epochs in Steps

of 10 up to 100 Total, for Three Noteworthy GANs– (1, 1)-GAN (Vanilla),

(0.6, 1)-GAN, and LSGAN– and for Two Similar Learning Rates– 5× 10−4

and 6 × 10−4. (b) Log-Scale Plot of LSUN Classroom FID Scores Over

Training Epochs in Steps of 10 up to 100 Total, for Three Noteworthy

GANs– (1, 1)-GAN (Vanilla), (0.6, 1)-GAN, and LSGAN– and for Two

Similar Learning Rates– 1× 10−4 and 2× 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

12. Generated LSUN Classroom Images From the Same Three GANs Over 8

Seeds When Trained for 100 Epochs with a Learning Rate of 2× 10−4. . . . . . 29

viii



Chapter 1

INTRODUCTION

Generative Adversarial Networks (GANs) have emerged as a powerful framework

for generating realistic and high-quality data across a variety of applications, including

art generation (Gatys, Ecker, and Bethge 2015), audio synthesis (Donahue, McAuley,

and Puckette 2018), and healthcare (Jiang et al. 2020). The concept of GANs was

first introduced by (Goodfellow et al. 2014), and since then, GANs have gained

significant attention in the field of deep learning. The original GAN, known as vanilla

GAN, consists of a generator network and discriminator network: the generator learns

a mapping from random noise to synthetic data samples, while the discriminator

estimates the probabilities of samples being real or generated (refer to Figure 1). The

training objective of vanilla GAN involves a min-max game between the generator and

the discriminator; specifically, the generator aims to produce samples that resemble

the real data, while the discriminator aims to classify the source of each sample.

Although the objectives of vanilla GANs provide an intuitive formulation for

training, they can lead to several challenges. One common challenge is the threat of

exploding and vanishing gradients: imbalanced performances in GAN training often

coincide with the occurrence of these gradient-related issues. For example, gradient

explosion occurs when the generator produces severely misclassified samples, leading to

unstable updates and overshooting of the generated data. On the other hand, gradient

vanishing occurs when discriminator confidently assigns near-zero probabilities to the

generator, hindering meaningful weight updates due to the saturating nature of the

generator objective. Another challenge faced by the vanilla GAN is mode collapse,
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Figure 1. A simple depiction of a Generative Adversarial Network (GAN). The
generator model aims to produce synthetic samples that trick the discriminator
model into classifying them as real.

where the generator produces samples that resemble only a small portion of the real

data. In this scenario, the generator lacks the incentive to capture the full diversity of

the data, as the discriminator exhibits a locally flat decision landscape. Additionally,

model oscillation may occur when the steep gradients of outlier samples heavily

influence the generator weight update, at the expense of preserving the proximity of

the samples close to the real data; this leads to an iterative oscillation of the generator

and discriminator without any significant model improvement.

While alternative GAN architectures have been proposed to address these instabil-

ities (Bhatia et al. 2021; Nowozin, Cseke, and Tomioka 2016)they often have limited

success in fully overcoming the challenges. As a result, this thesis aims to explore

an alternative approach to improve the stability of GAN training and the quality

of generated samples. Specifically, we introduce the (αD, αG)-GAN as a descendant

of α-loss (Sypherd et al. 2019) and generalization of α-GAN (Kurri, Sypherd, and

Sankar 2021; Kurri et al. 2022). The (αD, αG)-GAN formulation aims to overcome the

limitations of the vanilla GAN by allowing the practitioner to tune parameters αD and

αG for a more stable training process. We derive specific objectives for the generator

and discriminator in the (αD, αG)-GAN and investigate the advantages of using these

objectives; in doing so, we compare (αD, αG)-GAN to the vanilla GAN with gradient
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analysis, and find that tuning αD and αG has an impact on the optimization trajectory

traversed by the generator.

Furthermore, we present empirical evidence from experiments conducted on various

datasets, including a 2D Gaussian Mixture Ring (Srivastava et al. 2017), the Celeb-A

image dataset (Liu et al. 2015), and the LSUN Classroom image dataset (Yu et

al. 2015). Multiple evaluation metrics, including mode coverage and Fréchet Inception

Distance (Heusel et al. 2017), are used to measure the performance of (αD, αG)-GAN

compared to the vanilla GAN and state-of-the-art Least Squares GAN (LSGAN)

(Mao et al. 2017). Experiments are conducted for numerous seeds on a range of

learning rates and training epochs, which are particularly sensitive to GAN training

instabilities. The experimental results demonstrate the effectiveness and stability of

the (αD, αG)-GAN architecture in generating diverse and high-quality samples. In

particular, tuning αD < 1 exhibits robustness to hyperparameter choice and achieves

competitive performance compared to LSGAN.

Overall, this thesis aims to address the common failures of vanilla GANs by

introducing the (αD, αG)-GAN architecture. By formulating dual objectives for

the generator and discriminator, and conducting extensive experiments, we provide

theoretical insight and empirical evidence for the improved training stability of

(αD, αG)-GAN. We hope the findings of this research contribute to advancing the field

of GANs and offer valuable insights for generating more realistic synthetic data.
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Chapter 2

THE FAILURES OF VANILLA GAN

Generative Adversarial Networks (GANs) have shown great potential in generating

realistic and diverse samples. However, the original formulation of GANs, known as

vanilla GAN (Goodfellow et al. 2014), is susceptible to several common failures that

hinder their training and affect the quality of generated samples. In this section, we

first define the vanilla GAN objectives for both the discriminator and generator, then

discuss the specific failures of vanilla GAN: these include exploding and vanishing

gradients, mode collapse, and model oscillation.

2.1 Vanilla GAN Objectives

As depicted in Figure 2, the vanilla GAN framework consists of two modules: a

generator network G parameterized by vectors θ ∈ Θ ⊂ Rng , and a discriminator

network D parameterized by ω ∈ Ω ⊂ Rnd . The generator Gθ : Z → X maps

noise Z ∼ PZ to a data sample in X and aims to produce synthetic samples that

resemble real data. The discriminator Dω : X → [0, 1] estimates the probability

that input in X is drawn from Pr (real) as opposed to PGθ
(generated), thus serving

to distinguish between real and generated samples. Originally, the GAN training

objective involved a zero-sum, min-max game between the two networks, where the

generator and discriminator optimize their objectives adversarially. The generator’s

objective is to minimize the discriminator’s ability to correctly classify between the

real and generated samples, while the discriminator’s objective is to maximize its
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classification accuracy,

inf
θ∈Θ

sup
ω∈Ω

V (θ, ω), (2.1)

where V (θ, ω) is a value function measuring the classification accuracy of discriminator

Dω between the real samples, and samples produced by generator Gθ. For the vanilla

GAN, (Goodfellow et al. 2014) use the negative binary cross entropy (BCE) loss as

the value function

VVG(θ, ω) = EX∼Pr [logDω(X)] + EX∼PGθ
[log (1−Dω(X))]. (2.2)

This min-max game creates a competitive dynamic between the generator and discrim-

inator, driving them to improve iteratively. However, while the vanilla GAN objectives

offer an intuitive formulation for training, they can also contribute to challenges such

as exploding and vanishing gradients, mode collapse, and model oscillation, which

ultimately need to be addressed to achieve more stable and effective GAN training.

Figure 2. The GAN architecture consists of a generator network Gθ and discriminator
network Dω engaged in an adversarial game.
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2.2 Exploding & Vanishing Gradients

During vanilla GAN training, imbalanced performances between the generator and

discriminator often coincide with the presence of exploding and vanishing gradients.

When updating the generator weights during the backward pass of the network Dω◦Gθ,

the gradients are computed by propagating the error signal from the output layer

of Dω to the input layer of Gθ, following the chain rule of derivatives. Each layer

contributes to the gradient update by multiplying the incoming gradient with the

local gradient of its activation function, and passing it to the preceding layer.

When the gradients become large, the successive multiplication of these gradients

across the layers can result in an exponential growth, known as gradient explosion.

Conversely, small gradients can lead to an exponential decay, referred to as gradient

vanishing. In both cases, networks with multiple hidden layers are particularly

susceptible to unstable weight updates, causing extremely large or small values that

may overflow or underflow the numerical range of computations, respectively.

In the context of vanilla GANs, gradient explosion can occur when the generator

successfully produces samples that are severely misclassified (close to 1) by the

discriminator. During training, the generator is updated using the loss function

log (1−Dω(x)), which diverges to −∞ as the discriminator output Dω(x) approaches

1. Consequently, the gradients for the generator weights fail to converge to non-zero

values, leading to the generated data potentially overshooting the real data in any

direction. In severe cases of gradient explosion, the weight update can direct the

generated data toward a region far from the real data. As a result, the discriminator

can easily assign zero probabilities to the generated data and ones to the real data.

As the discriminator output approaches zero, the generator’s loss function converges
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to zero, causing the gradients of the generator weights to vanish gradually. As shown

in Figure 3(a), this phenomenon can prevent the generator from effectively correcting

itself and improving its performance over time.

Addressing the issues of exploding and vanishing gradients, (Goodfellow et al. 2014)

proposed a solution in the form of a non-saturating (NS) generator objective:

V NS
VG (θ, ω) = EX∼PGθ

[− logDω(X)]. (2.3)

The use of this non-saturating loss function allows the generated data to converge

toward the real distribution. As the discriminator output approaches 1, the generator

loss approaches zero, indicating that the generated data becomes more aligned with

the real distribution. Additionally, with a high-performing discriminator, the generator

receives steep gradients (as opposed to vanishing gradients) during the update process;

this occurs because the generator loss diverges to +∞ as the discriminator output

approaches zero.

Although the non-saturating vanilla GAN (an industry standard) incorporates

different objective functions for the generator and discriminator, it still suffers from

mode collapse and oscillations (Arjovsky and Bottou 2017; Wiatrak, Albrecht, and

Nystrom 2019) which is discussed in the next section. These issues arise due to

convergence problems and the sensitivity of the GAN to hyperparameter initialization,

resulting from the presence of large gradients. Various alternative dual-objective GANs

have been proposed, such as the Least Squares GAN (LSGAN) (Mao et al. 2017),

RényiGAN (Bhatia et al. 2021), non-saturating f -GAN (Nowozin, Cseke, and Tomioka

2016), and hybrid f -GAN (poole2016improved). However, these approaches have

rarely been successful in fully addressing GAN training instabilities.
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2.3 Mode Collapse & Model Oscillation

During GAN training, the primary goal of the generator is to produce high-quality

samples that encompass the full range of diversity found in the real distribution.

However, there is a potential drawback known as mode collapse, which occurs when

the generator produces samples that closely resemble only a limited subset of the

real data. In such cases, the generator lacks the incentive to capture the remaining

modes since the discriminator struggles to effectively differentiate between the real

and generated samples. One possible explanation for this phenomenon, as depicted

in Figure 3(b), is that the generator and/or discriminator become trapped in a local

minimum, impeding the necessary adjustments to mitigate mode collapse. In the

figure, the cluster of generated data approaches a single mode in the real distribution,

which forces the discriminator to adjust properly; if the discriminator landscape is

sufficiently flat in the mode neighborhood, then the generator may struggle to adapt.

In the case of mode collapse, the generator or discriminator may converge prema-

turely, leading to a suboptimal standstill between the models. On the other hand,

a generator training with the non-saturating value function V NS
VG may experience a

complete failure to converge due to influence from outlier generated data. Illustrated in

Figure 3(c), most of the generated data occupies the real modes and could receive small

gradients ∂ℓBCE (1, Dω(x)) /∂x if the discriminator landscape is locally flat. However,

some outlier data is situated very far from the real distribution and consequently

receive steep gradients. To address the high non-saturating loss from the outliers,

the generator prioritizes directing the outlier data toward the real data over keeping

the close data in place; as a result, the generator update reflects a compromise in

8



Figure 3. An illustration of three common GAN failures – (a) exploding and
vanishing gradients, (b) mode collapse, and (c) model oscillation – over 4 points in
training time.

Time = 2 of Figure 3(c), where the outliers are resolved at the expense of nudging

the other data away from the modes.

Although the generator succeeds at bringing down the average loss by eliminating

these outliers, the discriminator is now able to confidently distinguish between the

distributions, leading to near-zero probabilities assigned to the generated data. In

turn, the generated samples all receive steep gradients which may result in oscillations

around the real data. Gradually, the models lose their accumulated knowledge on the

structure of the real distribution and essentially restart the training process.
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Chapter 3

FORMULATING THE (αD, αG)-GAN

In the previous section, we present an overview of the numerous challenges faced

by the vanilla GAN when training with the value function in (2.2). Addressing these

challenges, we introduce a generalization of the vanilla GAN, namely (αD, αG)-GAN,

that employs a pair of tunable objectives, each possessing characteristics that help

enhance the stability of the training process. First, we derive (αD, αG)-GAN and

define its objectives for the generator and discriminator; next, we explore the intuitive

advantages of using these novel objectives to help improve GAN training stability.

3.1 (αD, αG)-GAN: A Dual-Objective Generalization of α-GAN

Similar to the vanilla GAN, the (αD, αG)-GAN consists of a generator network

and a discriminator network engaged in an adversarial game. As shown in (2.1), the

adversarial game can be formulated as a zero-sum min-max problem for a chosen value

function V (θ, ω). Observing that the discriminator is a classifier, (Kurri, Sypherd,

and Sankar 2021) recently demonstrated that the value function can be expressed

using a class probability estimation (CPE) loss denoted as ℓ(y, ŷ), where y ∈ {0, 1}

represents the true label and ŷ ∈ [0, 1] denotes the soft prediction of y, given below:

V (θ, ω) = EX∼Pr [−ℓ(1, Dω(X))] + EX∼PGθ
[−ℓ(0, Dω(X))]. (3.1)
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Using this approach, the authors introduce α-GAN using the tunable CPE loss

α-loss (Sypherd et al. 2019; Sypherd et al. 2022), defined for α ∈ (0,∞] as

ℓα(y, ŷ) :=
α

α− 1

(
1− yŷ

α−1
α − (1− y)(1− ŷ)

α−1
α

)
. (3.2)

The findings demonstrate that the α-GAN formulation can recover various f -divergence

based GANs, such as the Hellinger GAN (Nowozin, Cseke, and Tomioka 2016) with

α = 1/2, the vanilla GAN (Goodfellow et al. 2014) with α = 1, and the Total Variation

(TV) GAN (Nowozin, Cseke, and Tomioka 2016) with α = ∞. Additionally, when

considering a sufficiently large discriminator set Ω, the min-max optimization for

α-GAN in (2.1) simplifies to minimizing the Arimoto divergence between the real and

generated distributions Pr, PGθ
(Österreicher 1996; Liese and Vajda 2006).

Despite the advantages offered by each of the aforementioned GANs, they still suffer

from various types of training instabilities outlined in Chapter 2. Recent research has

argued that α-loss exhibits favorable gradient behaviors for different α values (Sypherd

et al. 2022). It also ensures the development of robust classifiers that can reduce the

confidence of the discriminator (a classifier), thereby enabling the generator to learn

without gradient issues. To this end, we propose the use of distinct α-loss objectives

for each player; specifically, we introduce a tunable dual-objective (αD, αG)-GAN,

where the objective functions of the discriminator and generator are formulated using

α-loss with parameters αD ∈ (0,∞] and αG ∈ (0,∞], respectively. In particular, the

discriminator maximizes VαD
(θ, ω) while the generator minimizes VαG

(θ, ω), where

Vα(θ, ω) = EX∼Pr [−ℓα(1, Dω(X))] + EX∼PGθ
[−ℓα(0, Dω(X))]. (3.3)

Notice that we recover the α-GAN (Kurri, Sypherd, and Sankar 2021; Kurri et al. 2022)

value function when αD = αG and the vanilla GAN value function when αD = αG = 1.

11



The resulting (αD, αG)-GAN is given by

sup
ω∈Ω

VαD
(θ, ω) (3.4a)

inf
θ∈Θ

VαG
(θ, ω). (3.4b)

Considering that α-GAN recovers various well-known GANs – including the vanilla

GAN, which is prone to saturation – the (αD, αG)-GAN formulation using the generator

objective in (3.3) can similarly saturate early in training, potentially leading to

vanishing gradients. Thus, we propose the following non-saturating alternative to the

generator’s objective in (3.3):

V NS
αG

(θ, ω) = EX∼PGθ
[ℓαG

(1, Dω(X))], (3.5)

thereby replacing (3.4b) with

inf
θ∈Θ

V NS
αG

(θ, ω). (3.6)

Henceforth, we will refer to the (αD, αG)-GANs training with the generator objectives

VαG
(3.3) and V NS

αG
(3.5) as the saturating (αD, αG)-GAN and non-saturating (αD, αG)-

GAN, respectively.

3.2 Analysis of (αD, αG)-GAN

For both saturating and non-saturating (αD, αG)-GAN, the discriminator seeks to

maximize the value function VαD
(θ, ω) with respect to its parameters ω ∈ Ω. Assuming

a sufficiently large discriminator set Ω, (Kurri, Sypherd, and Sankar 2021) show that

for a fixed generator Gθ, the discriminator optimizing the sup of VαD
(θ, ω) is given by

Dω∗(x) =
pr(x)

αD

pr(x)αD + pGθ
(x)αD

, (3.7)

12



where pr and pGθ
are the corresponding densities of the distributions Pr and PGθ

,

respectively, with respect to a base measure dx (e.g., Lebesgue measure).

We note that the input to the discriminator is a random variable X which can be

viewed as being sampled from a mixture distribution, i.e., X ∼ δPr+(1− δ)PGθ
where

δ ∈ (0, 1). Without loss of generality, we assume δ = 1/2 but the analysis that follows

can be generalized for arbitrary δ. We use the Bernoulli random variable Y ∈ {0, 1}

to indicate that X = x is from the real Y = 1 or generated Y = 0 distributions.

Therefore, P (Y = 1) = 1− P (Y = 0) = δ = 1/2. Thus, one can then compute the

posterior P (Y = 1|X = x) as follows:

P (Y = 1|X = x) =
δPr(x)

δPr(x) + (1− δ)PGθ
(x)

(3.8)

δ=1/2
=

Pr(x)

Pr(x) + PGθ
(x)

(3.9)

where the simplification in (3.9) follows from the fact that we assume δ = 1/2.

In the following theorem, we observe that the optimal discriminator Dω∗ for the

(αD, αG)-GAN in (3.7) is simply the αD-tilted1 version of P (Y = 1|X = x).

Theorem 3.2.1. Assuming a sufficiently large discriminator set Ω, the optimal

(αD, αG)-GAN discriminator Dω∗(x) defined in (3.7) is equivalent to the αD-tilted

version of the true posterior P (Y = 1|X), namely PαD
(Y = 1|X).

Proof sketch. We multiply the numerator and denominator of Dω∗(x) in (3.7) by

1/ (pr(x) + pGθ
(x))αD , then simplify and substitute via (3.9), which leads to PαD

(Y =

1|X) with more simplification. See Appendix A.1 for a detailed proof.

Choosing αD = 1 clearly recovers the true posterior and in theory, should suffice to

learn the optimal discriminator (provided Ω is sufficiently large). However, in practice,

1In information theory and statistics, the term α-tilting refers to raising the entries of a probability
vector to their αth-power and normalizing them to obtain a probability measure.
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Figure 4. A toy example with a real distribution Pr = N (−2, 0.52) (blue) and
generated distribution PGθ

= N (2, 0.52) (orange).The optimal discriminator output
Dω∗(x) in (3.7) is plotted for several values of αD ≤ 1.

tuning αD allows us address the training challenges discussed earlier. We first begin

by understanding several important consequences of tilting the true posterior. As αD

is tuned above 1, (3.7) implies a more confident discriminator, i.e. if pGθ
(x) > pr(x),

then Dω∗ decays more rapidly from 1/2, and if pGθ
(x) < pr(x), then Dω∗ increases

more rapidly from 1/2. In the extreme case of αD → ∞, the discriminator output for

input x simplifies to 1{pr(x) > pGθ
(x)}+ 1

2
1{pr(x) = pGθ

(x)}, thus implementing the

Maximum Likelihood decision rule. Conversely, tuning αD < 1 induces a cautious

discriminator with more uniform predictions (Dω∗(x) → 1/2). In the extreme case of

αD = 0, the discriminator output is 1/2 for all input.

Figure 4 illustrates the difference between three αD-tilted posteriors with αD ≤ 1

for a toy example consisting of two Gaussian densities. As αD is tuned below 1 in

the value function VαD
(θ, ω), the discriminator Dω∗(x) becomes less confident in its

predictions, leading to “smoother” and less discrete output. In the αD = 1 case,

where the discriminator trains with binary cross entropy loss, we observe a very flat
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discriminator output in the region densely populated by pGθ
; this poses a problem

for generated data x that deviates significantly from the real data, since the gradient

∂ [Dω∗(x)/ ∂x] is close to zero. Consequently, the generator gradient with respect to

its weight vector θ

−∂ℓαD
(0, Dω∗(x))

∂θ
= −

∂ℓαD

(
0, Dω∗(x)

)
∂Dω∗(x)

× ∂Dω∗(x)

∂x
× ∂x

∂θ
(3.10)

also tends to zero, resulting in minimal or no weight updates. When dealing with

high-dimensional data, oftentimes the discriminator can easily distinguish between

real and generated data; this leads to very confident, discrete predictions when trained

with αD ≥ 1. As a result, the generator may receive limited or insufficient feedback

from the discriminator, resulting in a hindered ability to learn the real distribution.

Intuitively, tuning αD below 1 restricts the confidence of the discriminator while

retaining necessary information about the data. By slowing down the learning of the

discriminator, the generator receives informative gradients throughout the training

process, allowing it to keep pace and improve iteratively alongside the discriminator.

3.2.1 The Saturating (αD, αG)-GAN

The generator for saturating (αD, αG)-GAN seeks to minimize the value func-

tion VαG
(θ, ω) in (3.3), while the generator for non-saturating (αD, αG)-GAN min-

imizes V NS
αG

(θ, ω) in (3.5). In both cases, the optimization trajectory traversed by

the generator during training is strongly dependent on the practitioner’s choice of

(αD, αG) ∈ [0,∞)2. In the following two theorems, we offer deeper insights into how

the optimization trajectory is influenced by tuning the saturating and non-saturating

(αD, αG)-GANs, respectively; at the level of a single generated sample x with the

corresponding random variable X ∼ PGθ
, we find that the (αD, αG) parameters have
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Figure 5. (a) Plot of the gradient scalar CαD,αG
defined in (3.12) over the true

posterior P (Y = 1|X) for five different saturating (αD, αG)-GANs. (b) Plot of the
gradient scalar CNS

αD,αG
defined in (3.14) over the true posterior P (Y = 1|X) for five

different non-saturating (αD, αG)-GANs.

no effect on the direction of the (i) saturating gradient −∂ℓαG
(0, Dω∗(x)) /∂x and (ii)

non-saturating gradient ∂ℓαG
(1, Dω∗(x)) /∂x, but they do have a significant effect on

the gradient magnitudes.

Theorem 3.2.2. Let x be a sample generated by Gθ, and Dω∗ be optimal with respect

to VαD
(θ, ω). Then the direction of the saturating gradient −∂ℓαG

(0, Dω∗(x)) /∂x is

independent of αD and αG.

Proof sketch. We first substitute the optimal discriminator Dω∗(x) expression defined

in (3.7) into the generator objective −ℓαG
(0, Dω(x)), then take the derivative with

respect to x. We simplify the expression with the quotient rule and ultimately arrive

at the following equation:

−∂ℓαG
(0, Dω∗(x))

∂x
= CαD,αG

(
1

pGθ
(x)

∂pGθ

∂x
− 1

pr(x)

∂pr
∂x

)
, (3.11)
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where CαD,αG
is a scalar defined as

CαD,αG
= αDPαD

(Y = 1|X = x) (1− PαD
(Y = 1|X = x))1−1/αG . (3.12)

A detailed proof can be found in Appendix A.2.

The gradient of the generator loss with respect to a generated sample can be

interpreted as a vector suggesting which direction (and magnitude) the generator

should nudge the sample in order to reduce the loss. Theorem 3.2.2 demonstrates that

tuning the saturating (αD, αG)-GAN has no impact on the direction of the nudge, but

it does have influence on the magnitude, which is proportional to CαD,αG
. In Figure

5(a), we plot this scalar over the true probability that X ∼ 1
2
Pr +

1
2
PGθ

is real, namely

P (Y = 1|X), for five notable (αD, αG) combinations. In the (1, 1) case (i.e., vanilla

GAN), the gradient scalar approaches zero for samples far away from the real data,

and linearly increases to 1 for samples closer to the real data. As discussed earlier, this

optimization strategy is troublesome for early periods of training when the real and

generated data are fully separable, since the sample gradients are essentially zeroed

out by the scalar. To address this issue, Figure 5(a) shows that we can tune αD below

1 (e.g., 0.6) to ensure that samples most likely to be “generated” (P (Y = 1|X) → 0)

receive sufficient gradient for updates that direct them closer to the real distribution.

Moreover, the saturating (1, 1)-GAN suffers with convergence issues since generated

samples close to the real data receive gradients large in magnitude (C1,1 → 1). Ideally,

these generated samples should not be instructed to move since they convincingly pass

as real to the optimal discriminator. As explained in Section 2.2, an excessive gradient

can nudge the generated data away from the real data, which ultimately separates

the distributions and forces the GAN to restart training. Although the (0.6, 1)-GAN

in Figure 5(a) appears to restrain the gradient scalar of samples close to the real
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data (P (Y = 1|X) → 1), we observe that tuning αG above 1 allows this gradient to

converge to zero as desired. This trend is exemplified in Figure 6(a), where GANs

with αD < 1 and αG > 1 train with a generator loss that (i) possesses a meaningful

gradient in the dense pGθ
region, and (ii) is convex in the dense pr region.

3.2.2 The Non-Saturating (αD, αG)-GAN

Although tuning the saturating (αD, αG)-GAN away from vanilla GAN promotes

a more favorable optimization trajectory for the generator, the loss −ℓαG
(0, Dω(x))

altogether seems counter-intuitive; realistically, generated samples far from Pr should

receive larger gradients than samples close to Pr. (Goodfellow et al. 2014) acknowledge

this limitation and propose the non-saturating value function V NS
VG in (2.3), which

we generalize to V NS
αG

in (3.3). The following theorem considers the loss function

ℓαG
(1, Dω(x)) used in V NS

αG
, and finds that its gradient with respect to x is not

influenced by our choice of (αD, αG). We discuss the implications in the sequel.

Theorem 3.2.3. Let x be a sample generated by Gθ and Dω∗ be optimal with respect

to VαD
(θ, ω). Then the direction of the non-saturating gradient ∂ℓαG

(1, Dω∗(x)) /∂x

is independent of αD and αG.

Proof sketch. Similar to Theorem 3.2.2, we substitute the optimal discriminator Dω∗(x)

expression defined in (3.7) into ℓαG
(1, Dω(x)), then take the derivative with respect

to x. We simplify via the quotient rule and arrive at the following equation:

∂ℓαG
(1, Dω∗(x))

∂x
= CNS

αD,αG

(
1

pGθ
(x)

∂pGθ

∂x
− 1

pr(x)

∂pr
∂x

)
, (3.13)

where CNS
αD,αG

is a scalar defined as

CNS
αD,αG

= αD (1− PαD
(Y = 1|X = x))PαD

(Y = 1|X = x)1−1/αG . (3.14)
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Figure 6. (a) Plot of the saturating generator loss −ℓαG
(0, Dω∗(x)) for several values

of αD ≤ 1, αG ≥ 1. (b) Plot of the non-saturating generator loss ℓαG
(1, Dω∗(x)) for

several values of αD ≤ 1, αG ≥ 1.

A detailed proof can be found in Appendix A.3.

The non-saturating (αD, αG)-GAN deviates from the vanilla GAN by allowing

the practitioner to tune αD and αG in order to stabilize the optimization trajectory

traversed by the generator. In Theorem 3.2.3, we show that tuning these parameters

exclusively influence the magnitude of the gradients (∝ CNS
αD,αG

) received by the

generated samples during backpropagation. Building on this, Figure 5(b) illustrates

the relationship between the gradient scalar CNS
αD,αG

and the probability that a sample

X ∼ 1
2
Pr +

1
2
PGθ

is real, namely P (Y = 1|X), for several select instances of (αD, αG).

In the vanilla (1, 1)-GAN case, we observe a negative linear relationship: the samples

least likely to be real (P (Y = 1|X) → 0) receive steep gradients (CNS
1,1 → 1) while

the samples most likely to be real receive minimal gradients. Although intuitive, the

vanilla GAN’s optimization strategy may render it vulnerable to model oscillation,

a common GAN failure detailed in section 2.3. In this scenario, the steep gradients

of the outlier (far from real) samples heavily influence the generator weight update,
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which can potentially draw the other generated samples away from the real modes. If

successful, the generator reduces the average non-saturating loss at the expense of the

data’s separability; in the next iteration, the discriminator confidently assigns near-

zero probabilities to the generated samples, leading to steep gradients and potential

oscillation of the generated data around the real data.

Towards addressing the threat of model oscillation, tuning αD below 1 slightly

increases (decreases) the gradient scalar CNS
αD,αG

received by the generated samples

close to (far from) the real modes, as shown in Figure 5(b). Intuitively, this strategy

incentivizes the generator to preserve the proximity of its generated samples to the

real samples, even if there exist outlier samples with steep gradients. As a result, the

generated samples are robust to outliers and therefore more likely to converge to the

real modes. In Figure 6(b), we observe that the non-saturating generator loss with

αD < 1 possesses a meaningful gradient in the dense pr region, while significantly

reducing the steep gradient in the dense pGθ
region. We also find that tuning αG

above 1 enhances the same optimization strategy – which is consistent with analysis

on the insensitivity of α-loss to outliers (Sypherd et al. 2019) – but the convergence

of CNS
αD,αG

to zero when P (Y = 1|X) → 0 can be problematic since the near-zero

gradients may immobilize data far from the real distribution.
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Chapter 4

EXPERIMENTAL RESULTS

In this section, we present empirical evidence for the effectiveness of (αD, αG)-GAN

compared to both the vanilla GAN (i.e., the (1, 1)-GAN) and the state-of-the-art Least

Squares GAN (LSGAN) (Mao et al. 2017). We conduct evaluations 2 on three datasets:

(i) a synthetic dataset generated by a two-dimensional, ring-shaped Gaussian mixture

distribution (2D-ring) (Srivastava et al. 2017), (ii) the Celeb-A image dataset with

dimensions of 64× 64 (Liu et al. 2015), and (iii) the LSUN Classroom image dataset

with dimensions of 112× 112 (Yu et al. 2015). For each dataset and type of GAN, we

report multiple metrics that capture the stability of GAN training across numerous

random seeds. This analysis serves to highlight the potential of tuning (αD, αG) to

achieve stable and robust solutions for image generation.

4.1 2D Gaussian Mixture Ring

The 2D-ring is an oft-used synthetic dataset for evaluating GANs. We draw samples

from a mixture of 8 equal-prior Gaussian distributions, indexed i ∈ {1, 2, . . . , 8} with

a mean of (cos(2πi/8), sin(2πi/8)) and variance 10−4. We generate 50,000 training

and 25,000 testing samples; additionally, we generate the same number of 2D latent

Gaussian noise vectors. Both the discriminator and generator networks have 4 fully-

connected layers with 200 and 400 units, respectively. We train for 400 epochs with

a batch size of 128, and optimize with Adam (Kingma and Ba 2014) and a learning

2Our repository can be found at https://github.com/SankarLab/AlphaGan-Papers-Results
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Figure 7. Plot of mode coverage over epochs for saturating (αD, 1)-GAN with
αD ∈ {0.2, 1}. Placed above this plot are 2D visuals of the generated samples (in
black) at different epochs, and the discriminator outputs are illustrated as heat maps.

rate of 10−4 for both models. We consider three types of GANs that differ in their

objectives: (i) saturating (αD, αG)-GAN in (3.4); (ii) non-saturating (αD, αG)-GAN

in (3.4a), (3.6); (iii) LSGAN with the 0-1 binary coding scheme (see Appendix B.1).

For every setting listed above, we train our models on the 2D-ring dataset for 200

random state seeds, where each seed contains different weight initializations for the

discriminator and generator. Ideally, a stable method will reflect similar performance

across randomized initializations and also over training epochs; thus, we explore

how GAN training performance for each setting varies across seeds and epochs. Our

primary performance metric is mode coverage, defined as the number of Gaussians

(0-8) that contain a generated sample within 3 standard deviations of its mean. A

score of 8 conveys successful training, while a score of 0 conveys a significant GAN

failure; on the other hand, a score in between 0 and 8 may be indicative of common

GAN issues, such as mode collapse or failure to converge.

For the saturating setting, the improvement in stability of the (0.2, 1)-GAN

relative to the vanilla GAN is illustrated in Figure 7. Specifically, we observe that
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Figure 8. (a) Plot of success and failure rates over 200 seeds for the saturating
(αD, 1)-GAN with αD ∈ [0.2, 1] trained on the 2D-ring dataset. (b) Generated
2D-ring samples from the vanilla GAN, (0.5, 1.2)-GAN, and LSGAN over 6 seeds.

both GANs successfully capture the ring-like structure, but the vanilla GAN fails to

maintain the ring over time. This can be attributed to the overconfident nature of the

αD = 1 discriminator, which in turn subjects the generator to exploding and vanishing

gradients. On the other hand, the less confident predictions of the (0.2, 1)-GAN create

a smooth landscape for the generated output to descend towards the real data.

In general, Figure 8(a) shows that the vanilla GAN completely fails to recover the

true distribution 30% of the time, while succeeding only 46% of the time. Conversely,

the (αD, 1)-GAN with αD < 1 learns a more stable generator due to a less confident

discriminator; for example, the (0.3, 1)-GAN success and failure rates improve to 87%

and 2%, respectively. Lastly, for the non-saturating setting in Figure 8(b), we find

that tuning αD < 1 and αG > 1 consistently yields more stable outcomes than do

vanilla GANs and LSGANs. Mode coverage rates over 200 seeds for saturating (Tables

2 and 3) and non-saturating (Table 4) are in Appendix B.
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4.2 Celeb-A & LSUN Classroom

The Celeb-A dataset (Liu et al. 2015) is a widely recognized large-scale collection

of over 200,000 celebrity headshots, encompassing images with diverse aspect ratios,

camera angles, backgrounds, lighting conditions, and other variations. Similarly, the

LSUN Classroom dataset (Yu et al. 2015) is a subset of the comprehensive Large-scale

Scene Understanding (LSUN) dataset; it contains over 150,000 classroom images

captured under diverse conditions and with varying aspect ratios. To ensure consistent

input for the discriminator, we follow the standard practice of resizing the images

to 64× 64 for Celeb-A and 112× 112 for LSUN Classroom. For both experiments,

we randomly select 80% of the images for training and leave the remaining 20% for

validation (evaluation of goodness metrics). Lastly, for each dataset, we generate a

similar 80%-20% training-validation split of 100-dimensional latent Gaussian noise

vectors, for a total matching the size of the true data.

For training, we employ the DCGAN architecture (Radford, Metz, and Chintala

GAN
Celeb-A LSUN Classroom

Learning rate (×10−4)

(αd, αg) 1 2 5 6 7 8 9 10 1 2 3 4 5

(1, 1) 100 93 83 60 59 39 54 55 92 36 13 13 12

(0.9, 1) 100 95 78 72 81 67 74 47 76 53 22 17 22

(0.8, 1) 98 98 89 82 81 72 68 76 89 61 36 28 29

(0.7, 1) 100 91 89 92 86 81 68 80 90 80 78 67 55

(0.6, 1) 98 93 88 77 85 76 77 69 96 90 85 78 66

(0.5, 1) 93 76 14 8 5 4 2 0 94 77 78 37 26

Table 1. Percentage out of 50 seeds of FID scores below 80 (Celeb-A) or 800 (LSUN
Classroom) for each combination of (αD, αG)-GAN and learning rate, trained for 100
epochs. Best results for each dataset and learning rate are emboldened.
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2015) that leverages deep convolutional neural networks (CNNs) for both the dis-

criminator and generator. In Appendix B, detailed descriptions of the discriminator

and generator architectures can be found in Table 5 for Celeb-A and Table 6 for

LSUN Classroom. Following previous works, our focus is solely on the non-saturating

setting, utilizing appropriate objective functions for vanilla GAN, (αD, αG)-GAN,

and LSGAN. We consider a variety of learning rates, ranging from 10−4 to 10−3, for

Adam optimization. Additionally, we evaluate our models every 10 epochs up to a

total of 100 epochs; in doing so, we report the Fréchet Inception Distance (FID), an

unsupervised similarity metric between the real and generated feature distributions

extracted by InceptionNet-V3 (Heusel et al. 2017). For both datasets, we train each

combination of objective function, number of epochs, and learning rate for 50 seeds.

In the following subsections, we empirically demonstrate the dependence of incep-

tion distance on learning rate and number of epochs for the vanilla GAN, (αD, αG)-

GAN, and LSGAN. Achieving robustness to hyperparameter initialization is especially

desirable in the unsupervised GAN setting as the choices that facilitate steady model

convergence are not easily determined without prior mode knowledge.

4.2.1 Celeb-A Results

In Figure 9(a), we examine the relationship between learning rate and FID for

each GAN trained for 100 epochs on the Celeb-A dataset. When using learning rates

of 1× 10−4 and 2× 10−4, all GANs consistently perform well. For instance, Table 1

demonstrates that GANs with a learning rate of 1× 10−4 achieve an FID score below

80 at least 93% of the time. However, when the learning rate increases to 5× 10−4,

the vanilla (1, 1)-GAN begins to exhibit instability across the 50 seeds. This is evident
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Figure 9. (a) Plot of Celeb-A FID scores averaged over 50 seeds for 8 different
learning rates and 7 different GANs trained for 100 epochs. (b) Plot of LSUN
Classroom FID scores averaged over 50 seeds for 5 different learning rates and 7
different GANs trained for 100 epochs.

in Table 1, where the (1, 1)-GAN achieves an FID score below 80 only 82.6% of the

time. As the learning rate surpasses 5× 10−4, the performance of the vanilla GAN

becomes even more erratic, underscoring the importance of GANs being robust to the

choice of learning rate.

Interestingly, we observe that tuning αD below 1 contributes to stabilizing the

FID scores over the 50 seeds while maintaining relatively low scores on average. For

instance, in Figure 9, we can see that the (0.6, 1)-GAN consistently achieves low FIDs

across all tested learning rates. Moreover, Table 1 emphasizes the stability of the

(0.7, 1)-GAN, as it achieves an FID score below 80 at least 80% of the time for 7 of the

learning rates. Comparatively, Figure 9(a) demonstrates that the GANs with αD < 1

perform on par with, if not better than, the state-of-the-art LSGAN. Additionally,

in Figure 11(a), we compare the learning rate sensitivities of the vanilla (1, 1)-GAN,

(0.6, 1)-GAN, and LSGAN by plotting their FIDs across 10 steps of 100 epochs for two

similar learning rates: 1× 10−4 and 2× 10−4. We discover that the vanilla (1, 1)-GAN

performs significantly worse for the higher learning rate and deteriorates over time
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Figure 10. Generated Celeb-A faces from the same three GANs over 8 seeds when
trained for 100 epochs with a learning rate of 5× 10−4.

for both learning rates. Conversely, both the (0.6, 1)-GAN and LSGAN consistently

exhibit favorable FID performance for both learning rates. However, the (0.6, 1)-GAN

converges to a low FID, while the FID of the LSGAN slightly increases as training

approaches 100 epochs.

Lastly, Figure 10 displays a grid of generated Celeb-A faces, randomly sampled

over 8 seeds for three GANs trained for 100 epochs with a learning rate of 5× 10−4.

Here, we observe that the faces generated by the (0.6, 1)-GAN and LSGAN exhibit

a comparable level of quality to the rightmost column images, which are randomly

sampled from the real Celeb-A dataset. On the other hand, the vanilla (1, 1)-GAN

shows clear signs of performance instability, as some seeds yield high-quality images

while others do not.

4.2.2 LSUN Classroom Results

Figure 9(a) illustrates the relationship between learning rate and FID for GANs

trained on the LSUN dataset for 100 epochs. First, we observe that when all GANs
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Figure 11. (a) Log-scale plot of Celeb-A FID scores over training epochs in steps of
10 up to 100 total, for three noteworthy GANs– (1, 1)-GAN (vanilla), (0.6, 1)-GAN,
and LSGAN– and for two similar learning rates– 5× 10−4 and 6× 10−4. (b) Log-scale
plot of LSUN Classroom FID scores over training epochs in steps of 10 up to 100
total, for three noteworthy GANs– (1, 1)-GAN (vanilla), (0.6, 1)-GAN, and LSGAN–
and for two similar learning rates– 1× 10−4 and 2× 10−4.

train with a learning rate of 1×10−4, they consistently deliver satisfactory performance.

For instance, as shown in Table 1, GANs with a learning rate of 1× 10−4 achieve an

FID score below 800 in at least 76% of the cases. However, raising the learning rate to

2× 10−4 leads to instability in the vanilla (1, 1)-GAN across the 50 seeds; this trend

is reflected in Table 1, where the (1, 1)-GAN achieves an FID score below 800 only

36.2% of the time. As the learning rate exceeds 2× 10−4, the performance stability

of the vanilla GAN diminishes even further, plummeting to as low as 12.2% when

training with a learning rate of 5× 10−4.

However, we once again observe that reducing αD below 1 contributes to stabilizing

the FID across the 50 seeds when trained with slightly higher learning rates. In Figure

9(b), we see that as αD is tuned down to 0.6, the mean FIDs consistently decrease

across all tested learning rates. These lower FIDs can be attributed to the increased

stability of the network, as indicated in Table 1. For example, the (0.6, 1)-GAN

achieves an FID score below 800 at least two-thirds of the time when trained with the
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Figure 12. Generated LSUN Classroom images from the same three GANs over 8
seeds when trained for 100 epochs with a learning rate of 2× 10−4.

highest learning rate. Despite the gains in GAN stability achieved by tuning down αD,

Figure 9 still demonstrates a noticeable disparity between the best (αD, αG)-GAN and

the state-of-the-art LSGAN. This suggests that there is still room for improvement in

generating high-dimensional images with (αD, αG)-GANs.

Furthermore, Figure 11(b) illustrates the average FID throughout the training

process for three GANs: (1, 1)-GAN, (0.6, 1)-GAN, and LSGAN, using two different

learning rates. These findings validate that the vanilla (1, 1)-GAN performs well

when trained with the lower learning rate, but struggles significantly with the higher

learning rate. In contrast, the (0.6, 1)-GAN shows less sensitivity to the choice of

learning rate, while the LSGAN achieves nearly identical scores for both learning

rates. To showcase the image quality generated by each GAN at epoch 100 with the

higher learning rate, refer to Figure 12. It is evident from the figure that the vanilla

(1, 1)-GAN frequently fails during training, whereas the (0.6, 1)-GAN and LSGAN

produce images that closely resemble the real distribution.
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Chapter 5

CONCLUSION

Overall, this thesis has explored the challenges faced by the vanilla GAN, and

introduced the (αD, αG)-GAN architecture as a solution to improve their training

stability and quality of generated samples. The objectives of vanilla GANs, while

intuitive, often lead to issues such as exploding and vanishing gradients, mode collapse,

and model oscillation. Alternative GAN architectures have been proposed but have

shown limited success in overcoming these challenges.

The (αD, αG)-GAN formulation addresses these limitations by allowing the tuning

of parameters αD and αG to achieve a more stable training process. The specific

objectives for the generator and discriminator in (αD, αG)-GAN have been derived

and analyzed through gradient analysis. Experimental results conducted on various

datasets – including 2D Gaussian Mixture Ring, Celeb-A, and LSUN Classroom –

have demonstrated the effectiveness and stability of (αD, αG)-GAN compared to the

vanilla GAN and LSGAN. Tuning αD below 1 has shown robustness to hyperparameter

choices and achieved competitive performance compared to LSGAN.

By providing both theoretical insights and empirical evidence, this research con-

tributes to the advancement of GANs and offers valuable insights for generating

more realistic synthetic data. The (αD, αG)-GAN architecture presents a promising

approach to address the failures of vanilla GANs and improve the training stability

and quality of generated samples. Future research can further explore and refine the

(αD, αG)-GAN architecture, potentially leading to even more significant advancements

in the field of generative models.
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A.1 Proof of Theorem 3.2.1

Proof. We first begin with the optimal discriminator equation in (3.7):

Dω∗(x) =
pr(x)

αD

pr(x)αD + pGθ
(x)αD

. (A.1)

Then we do some regrouping

=

pr(x)αD

(pr(x)+pGθ
(x))

αD

pr(x)αD

(pr(x)+pGθ
(x))

αD +
pGθ

(x)αD

(pr(x)+pGθ
(x))

αD

(A.2)

=

(
pr(x)αD

pr(x)+pGθ
(x)

)αD(
pr(x)αD

pr(x)+pGθ
(x)

)αD

+
(

pGθ
(x)αD

pr(x)+pGθ
(x)

)αD
(A.3)

and substitute via equation (3.9)

=
P (Y = 1|X = x)αD

P (Y = 1|X = x)αD + P (Y = 0|X = x)αD
(A.4)

= PαD
(Y = 1|X = x). (A.5)

A.2 Proof of Theorem 3.2.2

Proof. Suppose the discriminator Dω∗ is fixed and optimizes the sup of VαD
(θ, ω).

Then we know from (3.7) that

Dω∗(x) =
pr(x)

αD

pr(x)αD + pGθ
(x)αD

. (A.6)
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First we derive ∂Dω∗/∂x using the quotient rule, which will be helpful later on.

∂Dω∗

∂x
= (pr(x)

αD + pGθ
(x)αD)−2 [(pr(x)

αD + pGθ
(x)αD)(αDpr(x)

αD−1∂pr
∂x

)

− (pr(x)
αD)(αDpr(x)

αD−1∂pr
∂x

+ αDpGθ
(x)αD−1∂pGθ

∂x
)] (A.7)

= C1[αDpr(x)
2αD−1∂pr

∂x
+ αDpr(x)

αD−1pGθ
(x)αD

∂pr
∂x

− αDpr(x)
2αD−1∂pr

∂x
− αDpr(x)

αDpGθ
(x)αD−1∂pGθ

∂x
] (A.8)

where C1 = (pr(x)
αD + pGθ

(x)αD)−2

= C1

(
αDpr(x)

αD−1pGθ
(x)αD

∂pr
∂x

− αDpr(x)
αDpGθ

(x)αD−1∂pGθ

∂x

)
(A.9)

= C2

(
1

pr(x)

∂pr
∂x

− 1

pGθ
(x)

∂pGθ

∂x

)
(A.10)

where C2 = αDpr(x)
αDpGθ

(x)αD (pr(x)
αD + pGθ

(x)αD)−2

which simplifies to C2 = αDDω∗(x) (1−Dω∗(x))

= αDDω∗(x) (1−Dω∗(x))

(
1

pr(x)

∂pr
∂x

− 1

pGθ
(x)

∂pGθ

∂x

)
(A.11)

Next, we set µ = Dω∗(x) and derive −∂ℓαG
(0, µ) /∂µ as follows

−∂ℓαG
(0, µ)

∂µ
=

∂

∂µ

[
− αG

αG − 1

(
1− (1− µ)1−1/αG

)]
(A.12)

= −(1− µ)−1/αG . (A.13)

Lastly, to find the gradient −∂ℓαG
(0, Dω∗(x)) /∂x, we apply the chain rule and

substitute via equations (A.11), (A.13):

−∂ℓαG
(0, Dω∗(x))

∂x
= −∂ℓαG

(0, Dω∗(x))

∂Dω∗
× ∂Dω∗

∂x
(A.14)

= CαD,αG

(
1

pGθ
(x)

∂pGθ

∂x
− 1

pr(x)

∂pr
∂x

)
(A.15)

where CαD,αG
= αDDω∗(x) (1−Dω∗(x))1−1/αG

or equivalently,

CαD,αG
= αDPαD

(Y = 1|X = x) (1− PαD
(Y = 1|X = x))1−1/αG .

Since the scalar CαD,αG
is positive and the only term reliant on αD and αG, we conclude

that the direction of −∂ℓαG
(0, Dω∗(x)) /∂x is independent of these parameters.
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A.3 Proof of Theorem 3.2.3

Proof. This result will follow similarly to Theorem 3.2.2. First, we set µ = Dω∗(x)
and derive ∂ℓαG

(1, µ)/∂µ as follows:

∂ℓαG
(1, µ)

∂µ
=

∂

∂µ

[
αG

αG − 1

(
1− µ1−1/αG

)]
(A.16)

= −µ−1/αG (A.17)

Then we derive the gradient ∂ℓαG
(1, Dω∗(x)) /∂x with the chain rule by substituting

via equations (A.13), (A.17):

∂ℓαG
(1, Dω∗(x))

∂x
=

∂ℓαG
(1, Dω∗(x))

∂Dω∗
× ∂Dω∗

∂x
(A.18)

= CNS
αD,αG

(
1

pGθ
(x)

∂pGθ

∂x
− 1

pr(x)

∂pr
∂x

)
(A.19)

where CNS
αD,αG

= αD (1−Dω∗(x))Dω∗(x)1−1/αG

or equivalently,

CαD,αG
= αD (1− PαD

(Y = 1|X = x))PαD
(Y = 1|X = x)1−1/αG .

Since the scalar CNS
αD,αG

is positive and the only term reliant on αD and αG, we conclude
that the direction of ∂ℓαG

(1, Dω∗(x)) /∂x is independent of these parameters.
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B.1 Brief Overview of LSGAN

The Least Squares GAN (LSGAN) is a dual-objective, min-max game introduced
in (Mao et al. 2017). The LSGAN objective functions, as the name suggests, involve
squared loss functions for the generator and discriminator which are written as

inf
ω∈Ω

1

2

(
EX∼Pr [(Dω(X)− b)2] + EX∼PGθ

[(Dω(X)− a)2]
)

inf
θ∈Θ

1

2

(
EX∼Pr [(Dω(X)− c)2] + EX∼PGθ

[(Dω(X)− c)2]
)
. (B.1)

For appropriately chosen values of the parameters a, b, and c, (B.1) reduces to
minimizing the Pearson χ2-divergence between Pr + PGθ

and 2PGθ
. As done in the

original paper (Mao et al. 2017), we use a = 0, b = 1 and c = 1 for our experiments
to make fair comparisons. The authors refer to this choice of parameters as the 0-1
binary coding scheme.

Table 2. Success rates for 2D-ring with the saturating (αD, αG)-GAN over 200 seeds,
with top 4 combinations emboldened.

% of success
(8/8 modes)

αD

0.5 0.6 0.7 0.8 0.9 1.0

αG

0.9 73 79 69 60 46 34
1.0 80 79 74 68 54 47
1.1 79 77 68 70 59 47
1.2 75 74 71 65 57 46

Table 3. Failure rates for 2D-ring with the saturating (αD, αG)-GAN over 200 seeds,
with top 3 combinations emboldened.

% of failure
(0/8 modes)

αD

0.5 0.6 0.7 0.8 0.9 1.0

αG

0.9 11 10 12 13 29 49
1.0 5 5 7 8 16 30
1.1 7 9 13 12 13 26
1.2 9 5 9 12 17 31
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B.2 2D Gaussian Mixture Ring

In Tables 2 and 3, we report the success (8/8 mode coverage) and failure (0/8 mode
coverage) rates over 200 seeds for a grid of (αD, αG) combinations for the saturating
setting. Compared to the vanilla GAN performance, we find that tuning αD below 1
leads to a greater success rate and lower failure rate. However, in this setting, we find
that tuning αG away from 1 has no significant impact on GAN performance.

In Table 4, we detail the success rates for the non-saturating setting. We note
that for this dataset, no failures – and therefore, no vanishing/exploding gradients –
occurred in this setting. In particular, we find that the (0.5, 1.2)-GAN doubles the
success rate of the vanilla (1, 1)-GAN, which is more susceptible to mode collapse as
illustrated in Figure 8(b). We also find that LSGAN achieves a success rate of 32.5%,
which is greater than vanilla GAN but less than the best-performing (αD, αG)-GAN.

Table 4. Success rates for 2D-ring with the non-saturating (αD, αG)-GAN over 200
seeds, with top 5 combinations emboldened.

% of success
(8/8 modes)

αD

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

αG

0.8 35 24 19 19 14 16 18 10
0.9 39 37 19 22 16 20 19 21
1.0 34 35 29 28 26 22 20 32
1.1 40 36 31 22 24 15 23 25
1.2 45 38 34 25 26 28 20 22
1.3 44 39 26 28 28 25 31 29

B.3 Celeb-A & LSUN Classroom

The discriminator and generator architectures used for the Celeb-A and LSUN
Classroom datasets are described in Tables 5 and 6 respectively. Each architecture
consists of four convolution layers, with parameters such as kernel size (a.k.a., filter
size), stride (the amount by which the filter moves), and the activation functions applied
to the layer outputs. Zero padding is also assumed. In both tables, “BN“ represents
batch normalization, a technique that normalizes the inputs to each layer using a
batch of samples during model training. Batch normalization is commonly employed
in deep learning to prevent cumulative floating point errors and overflows, and to
ensure that all features remain within a similar range. This technique serves as a
computational tool to address vanishing and/or exploding gradients.
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Table 5. Discriminator and generator architectures for Celeb-A dataset.

Discriminator
Layer Output size Kernel Stride BN Activation
Input 3× 64× 64 Leaky ReLU

Convolution 64× 32× 32 4× 4 2 Yes Leaky ReLU
Convolution 128× 16× 16 4× 4 2 Yes Leaky ReLU
Convolution 256× 8× 8 4× 4 2 Yes Leaky ReLU
Convolution 512× 4× 4 4× 4 2 Yes Leaky ReLU
Convolution 1× 1× 1 4× 4 2 Sigmoid

Generator
Layer Output size Kernel Stride BN Activation
Input 100× 1× 1 ReLU

ConvTranspose 512× 4× 4 4× 4 2 Yes ReLU
ConvTranspose 256× 8× 8 4× 4 2 Yes ReLU
ConvTranspose 128× 16× 16 4× 4 2 Yes ReLU
ConvTranspose 64× 32× 32 4× 4 2 Yes ReLU
ConvTranspose 3× 64× 64 4× 4 2 Tanh

Table 6. Discriminator and generator architectures for LSUN Classroom dataset.

Discriminator
Layer Output size Kernel Stride BN Activation
Input 3× 112× 112 Leaky ReLU

Convolution 64× 56× 56 4× 4 2 Yes Leaky ReLU
Convolution 128× 28× 28 4× 4 2 Yes Leaky ReLU
Convolution 256× 14× 14 4× 4 2 Yes Leaky ReLU
Convolution 512× 7× 7 4× 4 2 Yes Leaky ReLU
Convolution 1× 1× 1 7× 7 2 Sigmoid

Generator
Layer Output size Kernel Stride BN Activation
Input 100× 1× 1 ReLU

ConvTranspose 512× 7× 7 7× 7 2 Yes ReLU
ConvTranspose 256× 14× 14 4× 4 2 Yes ReLU
ConvTranspose 128× 28× 28 4× 4 2 Yes ReLU
ConvTranspose 64× 56× 56 4× 4 2 Yes ReLU
ConvTranspose 3× 112× 112 4× 4 2 Tanh
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