
Non-Targeted White-Box Evasion Attacks on the

Fashion MNIST Dataset

Kyle Otstot

September 26, 2022

1 Training a LeNet-5 CNN on Fashion MNIST

In this portion of the report, I trained a model to classify images from the
Fashion MNIST dataset. Specifically, I used the LeNet-5 model architecture
along with other standard hyperparameter choices. To determine which setting
performed best on Fashion MNIST, I implemented a grid search to test all
possible combinations with the help of ASU’s GPU cluster. The grid search–
including hyperparameters and tested values– are reported in Table 1 below.

Type Setting Values

Pooling Average, Max

Activation Tanh, ReLUNetwork

Dropout 0.1, 0.2, 0.3

Batch size 32, 64, 128
Training

Number of epochs 100

Algorithm Adam, SGD

Learning rate 5e-4, 1e-3, 2e-3, 5e-3, 1e-2Optimization

Weight decay 1e-4, 1e-3, 1e-2

Table 1: Grid search of hyperparameters

The combination of hyperparameters that achieved the best test accuracy is
highlighted in bold font. Additionally, the LeNet-5 architecture is outlined in
Table 2, and the training + validation loss is plotted against time in Figure 2.
This figure shows that our choice of number of epochs is appropriate, since the
two losses appear to converge. With the best combination of hyperparameters,
the LeNet-5 achieved a test accuracy of 92.05%. I believe that if we used more
feature maps in the convolution layers, we could increase the test accuracy
further; however, we kept the general LeNet architecture fixed and focused on
more specific hyperparameters.

1

Layer Setting

1 Conv2D In channels = 1, out channels = 6, kernel = (5 x 5), padding = 2

2 ReLU x

3 Avg. Pool Kernel = (2 x 2), stride = 2

4 Conv2D In channels = 6, out channels = 16, kernel = (5 x 5), padding = 2

5 ReLU x

6 Avg. Pool Kernel = (2 x 2), stride = 2

7 Flatten x

8 Dropout probability = 0.2

9 Linear In features = 400, out features = 120

10 ReLU x

11 Dropout probability = 0.2

12 Linear In features = 120, out features = 84

13 ReLU x

14 Dropout probability = 0.2

15 Linear In features = 84, out features = 10

Table 2: LeNet-5 architecture

Figure 1: Train and validation loss reported over time

2

2 Attacking the CNN with FGSM and PGD

In this portion of the report, I implemented two adversarial attacks– fast gradi-
ent sign method (FGSM) and projected gradient descent (PGD). The first attack
is parameterized by ϵ, while the second attack is defined by ϵ, α and n. For sim-
plicity, I set α = ϵ = 25/255 and received very good results from it. In Table 3,
I report a series of metrics for the original images, images attacked by FGSM,
and images attacked by PGD of varying steps. We can see that as the number
of steps for PGD increases, the attack becomes more effective: for example, the
original images are classified correctly 92.05% of the time, but a 10-step PGD
attack reduces the accuracy to 0.3%. The success rates for each attack can be
interpreted as the number of label flips, which are detailed in the last four rows
of the table.

PGD

Metrics Original FGSM steps = 1 2 5 10

Loss 0.224 3.85 3.85 6.95 10.78 11.89

Accuracy 0.921 0.185 0.185 0.046 0.007 0.003

% of C → C x 0.201 0.201 0.050 0.008 0.003

% of C → I x 0.799 0.799 0.950 0.992 0.997

% of I → C x 0.004 0.004 0 0 0

% of I → I x 0.996 0.996 1 1 1

Table 3: Metrics for both adversarial attacks. “% of C → I” = portion of
correctly-classified images that were incorrectly classified after being attacked.

Lastly, I recorded qualitative data for ten randomly selected test images
attacked by the 10-step PGD algorithm, found below.

3

4

5

6

