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I. PROBLEM DEFINITION

In the task of image classification, deep learning (DL)
methods have achieved impressive results. Specifically, these
methods rely on learning a DL model that best estimates the
true posterior distribution P (Y |X), where (X,Y ) is a feature-
label pair of random variables drawn from an underlying joint
distribution PX,Y . This can be accomplished by finding a
posterior that maximizes the expected probability of the true
class, as shown below:

P̂ := argmaxPEx,y∼X,Y P (y|x). (1)

Using a train set sampled from PX,Y , DL methods learn
a posterior that not only classifies the features accurately,
but also generalizes its classification ability to unforeseen
examples drawn from the train-set generating distribution.
This objective is encapsulated in the i.i.d. assumptions, where
the train and test sets are expected to be independent and
identically distributed. With a restricted DL architecture, the
model is forced to learn the inter-class semantics instead of
merely memorizing the labeling of the train data. However,
when the test data is drawn from a different distribution
QX,Y ̸= PX,Y , problems begin to arise in our task formula-
tion. The “domain shift” from P to Q may be subtle– including
artificial corruptions or adversarial nudges– or a more complex
one leveraging a degree of domain expertise. For example, a
classifier trained on handwritten digits may fail to generalize
to a test set of digits found on traffic signs. Since the problem
of domain shift is especially prevalent in real world systems,
it is important for deployed classifiers to be robust in the face
of any reasonable shift in the image data. In the following
sections, we will elaborate on domain shifts, as well as discuss
several specific “domain adaptation” problems.

II. CHALLENGES & MAIN CONTRIBUTIONS

Advances in domain adaptation require both a modeling
of the problem and development of a solution; at times, the
former proves to be more difficult than the latter. Histor-
ically, practitioners have evaluated their robust methods on
synthetically-corrupted test sets: for example, the benchmark
CIFAR-10 and CIFAR-100 datasets have prompted the cre-
ation of CIFAR-10-C and CIFAR-100-C, the same image sets
altered by 15 different “real-world” corruptions, including blur,

pixelation, and weather categories. Using slight corruptions to
the original image set has proven to be effective at subverting
classifiers trained on the original data; in [2], the classification
error of a model trained on ImageNet jumped from 24% to
76% after testing on ImageNet-C. Similarly, adversarial attack
algorithms, such as fast-sign gradient descent (FSGD) and
projected gradient descent (PGD), can slightly alter images
in a way that clearly preserves the semantics, yet successfully
flips the model’s classification. On the other hand, recent work
has attempted to model real-world domain shifts, including the
WILDS dataset [6] – a collection of dataset pairs that reflect a
particular real-world shift in the data. Although the collection
of real-world data shift is expensive, it is still valuable because
synthetically-corrupted datasets are not suitable in capturing
all kinds of potential domain shifts.

Another notable example of a real-world domain shift is
called shortcut learning, the phenomenon where a model
“cheats” on the train set by learning spurious cues instead
of properly embedding the comprehensive, human-esque set
of class representations. When these cues are present in both
the train and test data, the practitioner may not even notice:
after all, the model appears to be performing up to its best
potential. However, if the spurious cues are unique to the train
data, the model– to everyone’s befuddlement– may experience
a sharp drop in validation accuracy: all because the seemingly-
meaningless features in the train data are suddenly not present
in out-of-distribution samples. An example of this resides
in the medical industry, where a model studying chest X-
rays may disproportionately diagnose pacemaker patients with
congestive heart failure [4].

To put this notion more formally, we claim that given the
opportunity, a model will learn a classifier fS that effectively
minimizes the expected loss according to the source distri-
bution PS , but this classifier may differ vastly in structure
from the loss minimizer of the target distribution fT ( ̸= fS),
or even more broadly, the loss minimizer of the source-
target mixture distribution fS∪T . When attempting to learn
the target domain’s posterior distribution from prior knowledge
of the source domain, we are generally required to establish
a correspondence between the two domain’s respective class
semantics; for instance, when domain adaptation methods
choose to leverage the classifier fS as a compact representation



of the source distribution, it is of great importance that fS
properly identifies and embeds the image semantics mutually
present in each domain. However, with spurious cues in the
source data, the learned classifier may behave fundamentally
different than expected on the target data, thus subverting the
promise of a common ground between distributions. Moving in
this direction, we will show in our work that even state-of-the-
art (SoTA) methods for domain adaptation (DA) can be misled
by the simplest examples of shortcut learning. In doing so, we
make the following contributions: (1) we introduce Striped-
MNIST, a novel benchmark dataset for evaluating DA methods
against shortcut learning; (2) we propose our own solution to
Striped-MNIST (and potentially other DA settings) called Dis-
coNet, a method that leverages the DiscoGAN [5] architecture
to establish a cross-domain mapping between the two datasets,
which serves good use for regularizing the classifier trained on
the labeled source data; (3) we provide a comparative analysis
of DiscoNet with two SoTA DA methods, which are shown
to perform poorly on one (or many) variations of the Striped-
MNIST task.

III. RELATED WORK & SHORTCOMINGS

In light of model vulnerability to domain shifts, recent
work has argued for a variety of techniques to help combat
this threat, including data augmentation, adversarial learning,
and entropy minimization. On one hand, data augmentation
techniques have been shown to increase the diversity of
the train set, thus subjecting the model to an artificially-
broader distribution. For example, Mixup creates new train
examples by synthesizing pairs of original examples via con-
vex combination [10], and AugMix enhances the training set
with mixtures of three augmented images, each generated
by its own chain of stochastically-sampled operations (e.g.,
translation, rotation) [3]. However, one main critique of data
augmentation is that it relies on domain knowledge to identify
and exploit transformations in the pixel space that suppos-
edly preserve the semantics; consequently, the techniques are
inherently restricted to a subset of domains where these as-
sumptions hold true. On the other hand, adversarial approaches
have been crafted to robustify classifiers against “worst-case-
scenario” corruptions– for example, DL models can learn to
accurately classify PGD-attacked train images alongside the
original ones [7]. Moving beyond the simplistic nature of
PGD attacks, unsupervised domain adaptation (UDA) trains
with an adversarial component to learn a feature-extracting
CNN that projects the source and target images into a shared
feature distribution [1]; ideally, the feature extractor learns
to identify and encode the semantic representations present
in both domains, which are then applied to downstream
classification tasks. Lastly, taking a different perspective, the
test entropy minimization (TENT) method allows for the model
to train unregularized on the source data, then tweaks the batch
normalization parameters of the model to minimize the entropy
with the target data [9].

Out of these methods, we are particularly interested in
the latter two (UDA + TENT) as they have achieved SoTA

results on benchmark DA tasks, and are fueled by strategies
independent of domain knowledge, thus encouraging a rather
“universal” framework for domain adaptation. Overall, we ob-
serve that the two methods adapt well to conventional source-
target domain pairs (e.g., SVHN to MNIST [9]) because the
model either learns the domain-invariant feature representa-
tions (UDA), or uses its prior embedding of the source data to
confidently adjust the target classifications (TENT). However,
the UDA algorithm provides no guarantee (entropy, accuracy,
etc.) on the classification output of the target features, and
the TENT algorithm is particularly reliant on the initial state
of the trained source classifier; because of these reasons, we
hypothesize that such volatile strategies may be exploited by
shortcut learning. As a result, we move to the formulation of
our shortcut learning benchmark, Striped-MNIST, as well as
the proposal of our solution, DiscoNet.

Fig. 1. Examples of Striped-MNIST. The first row is fixed as the source
domain, while the next three are each considered as the target domain.

IV. METHODOLOGY

In this section, we provide an overview of our two main
contributions– the shortcut learning dataset and solution.

A. Striped-MNIST

Training on the conventional MNIST hand-written digit
dataset, it is nowadays common to receive a 99%+ test
accuracy with a CNN; however, achieving such an accuracy
may still take a considerable amount of iterations, which leaves
the model potentially vulnerable to even simpler “shortcuts”
toward class separation. In our Striped-MNIST dataset, we
simply add a vertical stripe to each image, with the stripe’s
horizontal position being a function of the image’s label. With
the exception of some noise, the dataset classes (originally
digits 0-9) can alternatively be described by the position
of the stripe; generally, digits 0 through 4 have a vertical
stripe spanning the 2nd through 6th leftmost pixel columns,
respectively, while digits 5 through 9 have their stripe spanning



Fig. 2. System block diagram of DiscoNet, our proposed solution to shortcut learning.

the 6th through 2nd rightmost pixel columns, respectively. As
the stripe pattern is clearly simpler and more accurate than
digit recognition, we expect the model to greedily fit on the
stripe positions in place of learning digit semantics. Having
done so, we posit the following questions: would the model
generalize to traditional MNIST? What if the test stripes were
all in the same leftmost position? What if the test stripes were
randomly distributed? Specifically, Figure 1 illustrates each
of these possibilities, beginning with the source domain of
ordered stripes and ending with the potential target domains.
Ideally, the model would recognize the inconsistencies in stripe
patterns across the source and target domains, then focus on
what they have in common– the handwritten digits. However,
it is possible that a performance-hungry classifier will narrow
its vision to the stripes and disregard the cross-domain stripe
relationships if not properly regularized. In the next section,
we break down a strategy that places a proper check on the
classifier to help adapt to these particular distribution shifts.

B. DiscoNet

The key to solving Striped-MNIST (or any similar DA task)
is to best understand the differences between the source and
target data distributions. In particular, a clever way is to model
a one-to-one correspondence between the two domains; having
done so, we may consider a target image xt and find its “source
equivalent” xs(↔ xt) by appealing to the cross-domain
mapping. An unsupervised example of modeling cross-domain
pairs is DiscoGAN [5], the establishment of an image-to-
image translation with adversarial learning and reconstruction
loss. Motivated by their architecture, we propose DiscoNet,
a method for strategically defining cross-domain relationships

in order to regularize the jointly-trained classifier. Specifically,
the algorithm iterates as follows: first, we sample from the
source domain (batch A and labels yA) and the target domain
(batch B). Without loss of generality, the generator GAB is
trained to receive batch A and produce B̃ in a way that the
discriminator DB has a difficult time distinguishing between
the fake B̃ and real B; this objective is reflected in the
generator loss ℓG. Moreover, GAB is encouraged to map A
to a batch in the target domain that is similarly embedded
in the classifier C: this is quantified by the Jensen-Shannon
consistency loss

ℓJS(CA, CB̃) =
1

2
DKL(CA∥Cmix)+

1

2
DKL(CB̃∥Cmix), (2)

where CA and CB̃ are the classifier outputs for A and B̃,
respectively, and Cmix is the mixture of the two outputs.
Assuming a fixed classifier, the Jensen-Shannon loss reinforces
both generators to map images in one domain to semantically-
similar images in the other domain. At the same time, the
classifier C is trained to fit on the source labels with cross-
entropy loss ℓCE , as well as similarly embed the image pairs
with ℓJS . Then, generator GBA maps B̃ to Â, which is trained
to be a reconstructed version of A; the reconstruction loss ℓR
is commonly MSE and works to reinforce the bijective nature
of the mapping. As a result, the total loss of the system is

L := ℓCE + λJSℓJS + λGℓG + λRℓR (3)

where λJS , λG, λR are tunable nonnegative scalars. For a
visual overview of the algorithm, Figure 2 is provided.



Fig. 3. Architectures for each model type– generator (×2), discriminator (×2), classifier– in DiscoNet.

V. EXPERIMENTAL SETUP & RESULTS

In this section, we compare the performances of two state-
of-the-art DA methods, namely unsupervised domain adapta-
tion (UDA) and test entropy minimization (TENT), with our
method DiscoNet on our shortcut learning Striped-MNIST
dataset. The source domain is fixed to the stripes ordered
by digit (top row of Figure 1), and the next three rows are
each considered as the target domain. The architecture for
the DiscoNet models is given in Figure 3: the two generators
follow a standard encoder-decoder scheme with skip connec-
tions. The two discriminators and classifier follow a similar
CNN structure, with the discriminators outputting a single
sigmoid unit and the classifier outputting a softmax vector of
size 10. For each model, the convolution and deconvolution
layers are succeeded with batch normalization, and the linear
layers are preceded with dropout. Furthermore, each model
is optimized with Adam, and the loss scalars λJS , λG, λR

are tuned to maximize the target data accuracy. Lastly, the
generators and discriminators are updated using the least-
squares GAN objective functions [8]. More details can be
found in the repository1, and results are given in Table I.

Target Stripes

Method Domain None Single Random

TENT
S 99.7 ± 0.0 59.7 ± 31.3 99.9 ± 0.0
T 72.7 ± 0.1 10.4 ± 0.0 10.1 ± 0.3

UDA
S 98.1 ± 0.2 98.0 ± 0.2 99.8 ± 0.1
T 99.3 ± 0.0 99.2 ± 0.1 10.0 ± 0.2

DiscoNet
S 99.3 ± 0.4 99.37 ± 0.3 99.6 ± 0.7
T 99.5 ± 0.1 99.40 ± 0.2 27.9 ± 40.0

TABLE I
CLASSIFICATION ACCURACY (MEAN% ± STD. DEVIATION) REPORTED
ACROSS 5 SEEDS FOR THREE METHODS AND THREE TARGET DOMAINS.

BEST RESULTS FOR EACH TARGET DOMAIN ARE EMBOLDENED.

1GitHub repository: https://github.com/kotstot6/DiscoNet

When the target domain does not contain any stripes, we
see that each method performs generally well; UDA and
DiscoNet appear to completely adapt, while TENT achieves
some gain with 72.7% target accuracy. In general, TENT has
a lot of trouble with this dataset because the model learns
the shortcut when training on the source data, and since the
stripes are not included in the target data, the model fails
to embed class representations present in both domains. On
the other hand, when there exists a single fixed stripe in the
target data, TENT performs even poorly because the source
classifier confidently learns that the leftmost stripe means “0”,
so the entropy is already very small; in fact, minimizing the
entropy further causes the model to output too many zeros
on the source data, which brings down the accuracy from an
initial 99% to less than 60%. For the single stripe, both UDA
and DiscoNet identify the difference between the source and
target, which allows them to focus on the digit features present
in both domains. Figure 4 gives an example of DiscoNet’s
cross-domain mapping: clearly, the model learns to shift the
stripe to position 0, back to the appropriate spot based on
the digit. Every method has some trouble with the random
stripes, most likely because there is not a shift in the label
distribution (uniform for both), so cross-domain mappings can
occur without forcing the classifier to focus on the digits.

Fig. 4. Cross-domain mappings from DiscoNet trained on Stripe-GAN.

https://github.com/kotstot6/DiscoNet
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