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Introduction

• Image Classification


• Given feature-label pair of random variables 
 , goal for the model is to learn a 

classifier that approximates 

• Model learns from dataset drawn from  , the 
underlying joint distribution – I.I.D. assumption [1]

• Problem: what if the dataset is “corrupted”, i.e. drawn 
from a misaligned joint distribution  ?

(X, Y) ∼ qX,Y

qY|X

qX,Y

q̃X,Y
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(x, y) = ( HORSE, )

AIRPLANE   AUTOMOBILE   BIRD   …   HORSE   SHIP    TRUCK  

0.02 0.05 0.92 0.0…  0.1 0.0

Classifier:  pY|X=x



Introduction

• Dataset Corruption


• Dataset is drawn from 

•  : corruption of the true posterior

• Approximately 8-38% of labels in real-world 
datasets are noisy [2]

• Flaws in data collection, e.g. crowdsourcing [3]
•  : corruption of the true prior

• Test-time feature distribution shifts
• Small corruptions to test images can subvert 

existing classifiers [4]

q̃X,Y = q̃Y|X ⋅ q̃X

q̃Y|X

q̃X
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Train images:

Test images:



Related Work
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• Robust Loss Functions


• A proposed remedy for noisy labeling in the train data
• Cross entropy (CE) loss shown to be non-robust under label noise [5]
• Focal loss [6], NCE+RCE loss [5], and -loss [7] have all been 

experimentally shown to outperform CE loss under label noise
α

• Data Augmentation


• A proposed remedy for test-time feature distribution shifts
• AugMix [8] has achieved state-of-the-art results on CIFAR-10/100-C
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AugLoss Framework
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• AugLoss: our learning methodology unifying data augmentation and robust loss functions 
to combat both noisy labeling and distribution shifts

Important settings


1. Augmentation technique
(augmenter + regularizer)

2. Neural network model 

3. Robust (basic) loss function

Introduction Related Work AugLoss Framework Experiments Conclusion



Experiments

• Question: How do AugLoss-specific methods perform under settings of noisy labeling and 
distribution shifts, compared to previous state-of-the-art approaches?
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• Datasets: CIFAR-10 and CIFAR-100


• Label noise generation: synthetic (symmetric, asymmetric) 
and human-annotated (CIFAR-N [9])

CIFAR-10N Random 2
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• Distribution shift modeling: train on traditional (clean) 
CIFAR, evaluate on CIFAR-C [4]

• Performance metric: mean corruption error 
(mCE) across the 15 corruptions in CIFAR-C



Experiments

• Network Settings: WideResNet-40-2 model [10], SGD optimizer, cosine annealing scheduler [11]

• Data preprocessing: random horizontal flips and batch normalization

• AugLoss Settings:
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Augmentation Loss Function

NoAug (baseline) CE loss (baseline)

AugMix Focal loss

NCE+RCE loss

Alpha-loss

Introduction Related Work AugLoss Framework Experiments Conclusion



Experiments

• Result #1: AugLoss (i.e., AugMix + robust loss) appears to combat the tested settings of real-
world dataset corruption, performing the best in all label noise categories
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Experiments

• Result #2: No specific robust loss function appears to be the “universal fit” for all tested 
settings of dataset corruption; rather, a mixture of losses yields the best results
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Conclusion

• Takeaways

• Proposed AugLoss, a novel methodology combining data augmentation and robust loss 
functions to combat noisy labeling and test-time distribution shifts

• Experimentally demonstrated that AugLoss methods can exhibit greater robustness to 
dataset corruption than the use of either data augmentation or robust loss alone
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• Future Work

• Potentially build on the efficacy of AugLoss by leveraging the new WILDS dataset [14] 
that encapsulates real-world distribution shifts
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