Related Work \bigcirc

AugLoss: A Robust, Reliable Methodology for Real-World Corruptions

J.K. Cava¹ T. Sypherd¹ K. Otstot¹ L. Sankar¹

¹ School of Electrical, Computer, and Energy Engineering Arizona State University

Arizona State University

Otstot, Cava, Sypherd, Sankar (ASU)

Experiments 0000

ICML PODS Workshop, July 2022

AugLoss: A Robust, Reliable Methodology

Introduction

Image Classification

- Given feature-label pair of random variables $(X, Y) \sim q_{X,Y}$, goal for the model is to learn a classifier that approximates $q_{Y|X}$
- Model learns from dataset drawn from $q_{X,Y}$, the underlying joint distribution – I.I.D. assumption [1]
- Problem: what if the dataset is "corrupted", i.e. drawn from a misaligned joint distribution $\tilde{q}_{X,Y}$?

Experiments 0000

Conclusion \bigcirc

AugLoss: A Robust, Reliable Methodology

Introduction

Dataset Corruption

- Dataset is drawn from $\tilde{q}_{X,Y} = \tilde{q}_{Y|X} \cdot \tilde{q}_X$
- $\tilde{q}_{Y|X}$: corruption of the true posterior
 - Approximately 8-38% of labels in real-world datasets are noisy [2]
 - Flaws in data collection, e.g. crowdsourcing [3]
- \tilde{q}_X : corruption of the true prior
 - Test-time feature distribution shifts
 - Small corruptions to test images can subvert existing classifiers [4]

Otstot, Cava, Sypherd, Sankar (ASU)

Experiments 0000

Train images:

ICML PODS 2022

AugLoss: A Robust, Reliable Methodology

 \bigcirc

Related Work

Robust Loss Functions

- A proposed remedy for **noisy labeling** in the train data
- Cross entropy (CE) loss shown to be non-robust under label noise [5]
- Focal loss [6], NCE+RCE loss [5], and α -loss [7] have all been experimentally shown to outperform CE loss under label noise

Data Augmentation

- A proposed remedy for test-time feature distribution shifts
- AugMix [8] has achieved state-of-the-art results on CIFAR-10/100-C

Otstot, Cava, Sypherd, Sankar (ASU)

AugLoss: A Robust, Reliable Methodology

Introduction $\bigcirc \bigcirc$

Related Work \bigcirc

AugLoss Framework

to combat both noisy labeling and distribution shifts

Important settings

- I. Augmentation technique (augmenter + regularizer)
- 2. Neural network model
- 3. Robust (basic) loss function

Otstot, Cava, Sypherd, Sankar (ASU)

AugLoss: A Robust, Reliable Methodology

 \bigcirc

Experiments 0000

Conclusion \bigcirc

• AugLoss: our learning methodology unifying data augmentation and robust loss functions

- distribution shifts, compared to previous state-of-the-art approaches?
- **Datasets:** CIFAR-10 and CIFAR-100
- **Label noise generation:** synthetic (symmetric, asymmetric) and human-annotated (CIFAR-N [9])
- **Distribution shift modeling:** train on traditional (clean) CIFAR, evaluate on CIFAR-C [4]
 - **Performance metric:** mean corruption error (mCE) across the 15 corruptions in CIFAR-C

• Question: How do AugLoss-specific methods perform under settings of noisy labeling and

а

True labe

CIFAR-10N Random 2

airplane -	0.84	0.03	0.04	0.01	0.01	0.01	0.01	0.01	0.04	0.02
utomobile -	0.02	0.83	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.10
bird -	0.02	0.02	0.83	0.02	0.03	0.02	0.02	0.01	0.01	0.01
cat -	0.02	0.02	0.04	0.74	0.02	0.11	0.03	0.01	0.01	0.01
deer -	0.02	0.02	0.03	0.02	0.75	0.05	0.02	0.07	0.01	0.01
dog -	0.01	0.01	0.02	0.09	0.02	0.81	0.01	0.02	0.00	0.01
frog -	0.01	0.02	0.04	0.03	0.02	0.03	0.83	0.01	0.01	0.01
horse -	0.01	0.01	0.01	0.01	0.02	0.03	0.01	0.88	0.01	0.00
ship -	0.03	0.03	0.01	0.01	0.01	0.01	0.00	0.01	0.87	0.02
truck -	0.02	0.13	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.80
air	autom	obile	bird	శా	beet	80 ⁰ 0	40 ⁰	orse	ship .	suct
		Annotated label								

- **Data preprocessing:** random horizontal flips and batch normalization
- AugLoss Settings:

Augmentation

NoAug (baseline)

AugMix

Otstot, Cava, Sypherd, Sankar (ASU)

Experiments $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion \bigcirc

• Network Settings: WideResNet-40-2 model [10], SGD optimizer, cosine annealing scheduler [11]

Loss Function
CE loss (baseline)
Focal loss
NCE+RCE loss
Alpha-loss

AugLoss: A Robust, Reliable Methodology

world dataset corruption, performing the best in all label noise categories

Otstot, Cava, Sypherd, Sankar (ASU)

AugLoss: A Robust, Reliable Methodology

Experiments $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion \bigcirc

• Result #1: AugLoss (i.e., AugMix + robust loss) appears to combat the tested settings of real-

• **Result #2:** No specific robust loss function appears to be the "universal fit" for all tested settings of dataset corruption; rather, a mixture of losses yields the best results

Noise Rate

Otstot, Cava, Sypherd, Sankar (ASU)

Experiments $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion \bigcirc

Introduction OO

Related Work \bigcirc

Conclusion

• Takeaways

- Proposed AugLoss, a novel methodology combining data augmentation and robust loss functions to combat noisy labeling and test-time distribution shifts
- Experimentally demonstrated that AugLoss methods can exhibit greater robustness to dataset corruption than the use of either data augmentation or robust loss alone

• Future Work

 Potentially build on the efficacy of AugLoss by leveraging the new WILDS dataset [14] that encapsulates real-world distribution shifts

Otstot, Cava, Sypherd, Sankar (ASU)

 \bigcirc

References

[1] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. S. Yu, "Generalizing to unseen domains: A survey on domain generalization," 2021.

[2] H. Song, M. Kim, and J.G. Lee, "SELFIE: Refurbishing unclean samples for robust deep learning," in *Proceedings of the 36th* International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 5907–5915. [Online]. [3] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio et al., "A closer look at memorization in deep networks," in International conference on machine learning. PMLR, 2017, pp. 233–242. [4] D. Hendrycks and T. Dietterich, "Benchmarking neural network robustness to common corruptions and perturbations," 2019. [5] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bailey, "Normalized loss functions for deep learning with noisy labels," 2020.

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection," 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017. [Online]. Available: http://dx.doi.org/10.1109/ICCV.2017.324 [7] T. Sypherd, M. Diaz, J. K. Cava, G. Dasarathy, P. Kairouz, and L. Sankar, "A tunable loss function for robust classification: Calibration, landscape, and generalization," 2021.

Otstot, Cava, Sypherd, Sankar (ASU)

References

[8] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan, "Augmix: A simple data processing method to improve robustness and uncertainty," *arXiv preprint arXiv:1912.02781*, 2019. [9] J. Wei, Z. Zhu, H. Cheng, T. Liu, G. Niu, and Y. Liu, "Learning with noisy labels revisited: A study using real-world human annotations," 2021.

[10] S. Zagoruyko and N. Komodakis, "Wide residual networks," arXiv preprint arXiv:1605.07146, 2016. [11] I. Loshchilov and F. Hutter, "SGDR: stochastic gradient descent with restarts," CoRR, vol. abs/1608.03983, 2016. [Online]. Available: http://arxiv.org/abs/1608.03983

Otstot, Cava, Sypherd, Sankar (ASU)

