AugLoss: A Robust, Reliable Methodology for Real-World Corruptions

Kyle Otstot¹, John Kevin Cava¹, Tyler Sypherd¹, Lalitha Sankar¹

Image Classification Problem

¹Arizona State University, **{kotstot, jcava, tsypherd, Isankar}@asu.edu**

CIFAR-10N Results:

Existing Remedies

[7] J. Wei, Z. Zhu, H. Cheng, T. Liu, G. Niu, and Y. Liu, "Learning with noisy labels revisited: A study using real-world human annotations," 2021.

Experiments on CIFAR-10/100

Test images: CIFAR-10/100-C [1]

CIFAR-10N Method Random 2 Random 3 Augment Loss Aggregate Random 1 Worst CE 32.24 ± 0.41 37.66 ± 0.30 37.96 ± 0.13 49.25 ± 0.34 37.56 ± 0.18 NoAug 34.85 ± 0.52 Focal 29.85 ± 0.42 34.84 ± 0.46 35.20 ± 0.39 48.05 ± 0.96 NCE+RCE 30.18 ± 0.21 31.11 ± 0.73 31.49 ± 0.31 32.35 ± 1.80 $\mathbf{38.13} \pm \mathbf{0.46}$ α -loss $\mathbf{29.22} \pm \mathbf{0.79}$ $\mathbf{30.44} \pm \mathbf{0.88}$ $\mathbf{31.34} \pm \mathbf{0.36}$ 39.93 ± 0.35 $\mathbf{30.71} \pm \mathbf{1.18}$ CE 15.40 ± 0.30 18.59 ± 0.15 18.76 ± 0.19 18.95 ± 0.17 29.73 ± 0.28 AUGMIX Focal 13.28 ± 0.16 $\mathbf{13.60} \pm \mathbf{0.30}$ $\mathbf{13.61} \pm \mathbf{0.20}$ 24.31 ± 0.18 $\mathbf{13.77} \pm \mathbf{0.11}$ NCE+RCE 13.72 ± 0.27 14.16 ± 0.03 13.85 ± 0.18 14.07 ± 0.09 $\mathbf{18.14} \pm \mathbf{0.32}$ $\mathbf{13.06} \pm \mathbf{0.13}$ 14.07 ± 0.28 14.04 ± 0.07 14.00 ± 0.06 21.25 ± 0.04 α -loss

No single loss function works best across all settings

AugLoss best addresses dataset corruption