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Image Classification Problem Existing Remedies

Given random variables  
goal for our model is to learn from the 
train set a good estimator of .

(X, Y ) ∼ qX,Y

qY|X

This setup is biased to the i.i.d. 
assumptions, i.e. the train examples 
are distributed identically to the 
examples encountered in the wild.

What if this assumption 
isn’t true? Do our models 
still learn a good estimate?

Dataset Corruption
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The train set is drawn from a misaligned q̃X,Y = q̃Y|X ⋅ q̃X

 : corruption of the true posteriorq̃Y|X  : corruption of the true priorq̃X

Train-time noisy labeling

Real world labels are 8-38% noisy [1]

Test-time domain shift

Classifiers vulnerable to small 
image corruptions [2]

The unification of data augmentation and robust loss functions to combat 
noisy labeling at train time and out-of-distribution features at test time.

AugLoss Framework

No single loss function works best across all settings

AugLoss best addresses dataset corruption

Can we leverage these well-studied techniques to address 
both types of dataset corruption simultaneously?

Train label noise generation

Test images: CIFAR-10/100-C [1] CIFAR-10N Results:

Experiments on CIFAR-10/100
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Data Augmentation 
for domain adaptation

Robust Loss Functions 
for noisy labeling 

e.g., AugMix with Jensen-Shannon 
Divergence consistency loss [6]

e.g., Focal loss [3]
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ℓ( ̂p, y; γ) = (1 − ̂p(y))γ
  log ̂p(y)

A(x)NCE+RCE [4]

and -loss [5]α

All empirically shown to outperform 
cross entropy loss under label noise. 

ORIGINAL AUGMENT

State-of-the-art results on CIFAR 
10/100-C and ImageNet-C

Asymmetric CIFAR-10N [7]Symmetric
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