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GENERATIVE ADVERSARIAL NETWORKS (GANS)
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• GANs [1] are generative models that learn to pro-
duce new samples from an unknown (real) distri-
bution Pr

• GeneratorGθ and discriminatorDω play an adver-
sarial game

• Gθ maps noise Z to synthetic samplesXg to mimic
the real samplesXr, while Dω tries to differentiate
between the synthetic and real samples

• Formulated as a zero-sum min-max game: inf
Gθ

sup
Dω

V (θ, ω)

VARIOUS VALUE FUNCTIONS & GANS
• Vanilla GAN (Goodfellow et al. [1]) minimizes Jensen-Shannon divergence (JSD):

inf
Gθ

sup
Dω:X→[0,1]

EXr∼Pr [logDω(Xr)] + EXg∼PGθ [log (1−Dω(Xg))]︸ ︷︷ ︸
= 2JSD(Pr‖PGθ )− log 4

• Can reformulate GANs using class probability estimation (CPE) loss `(y, ŷ), (y, ŷ) ∈
{0, 1} × [0, 1] [2, 3] as

inf
Gθ

sup
Dω:X→[0,1]

(V`(θ, ω) := EXr∼Pr [−`(1, Dω(Xr))] + EXg∼PGθ [−`(0, Dω(Xg))])

• We obtain α-GAN using α-loss (Sypherd et al. [4])

`α(y, ŷ) =
α

α− 1

(
1− yŷ

α−1
α − (1− y)(1− ŷ)

α−1
α

)
, for α ∈ (0, 1) ∪ (1,∞)

• α-GAN minimizes the Arimoto divergence and recovers vanilla GAN (α→ 1), Hellinger
GAN (α = 1/2), and total variation (TV) GAN (α→∞)

TRAINING INSTABILITIES IN GANS

Toy example: Pr = N (−3, 0.5), PGθ = N (−1, 0.5)

Optimal Discriminator
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Saturating Objective
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Non-saturating Objective
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• Vanilla GAN generator’s objective can saturate when discriminator confidently classi-

fies generated data as fake; tuning α < 1 addresses vanishing gradients by reducing con-
fidence of discriminator

• However, α ≤ 1 can produce exploding gradients for the generator as the generated sam-
ples approach real samples, potentially resulting in the generated data being repelled
from the real data

• [1] proposed a non-saturating alternative generator objective to combat vanishing gradi-
ents:

EXg∼PGθ [− log(1−Dω(Xg)]

– However, this objective can still lead to model oscillation and even mode collapse due to
failure to converge and sensitivity to hyperparameter initialization (e.g. learning rate)
because of large gradients

• Can address all of these types of instabilities via different α values for discriminator and
generator losses

(αD, αG)-GANS: DUAL OBJECTIVES
• Saturating (αD, αG)-GAN [5] non-zero sum game given by:

sup
Dω:X→[0,1]

V`αD (θ, ω) inf
Gω

V`αG (θ, ω)

Result. For a fixed Gω , the Dω∗ of an (αD, αG)-GAN is the same as that of α-
GAN with α = αD. For this Dω∗ and for (αD, αG) ∈ (0,∞]2 such that
(αD ≤ 1, αG > αD/(αD + 1)) or (αD > 1, αD/2 < αG ≤ αD), the generator of a sat-
urating (αD, αG)-GAN minimizes a non-negative symmetric f -divergence.

• Non-saturating (αD, αG)-GAN given by:

sup
Dω:X→[0,1]

V`αD (θ, ω) inf
Gω

EXg∼PGθ [`αG(1, Dω(Xg))]

Result. For the sameDω∗ and for (αD, αG) ∈ (0,∞]2 with αD+αG > αGαD, the generator
of a non-saturating (αD, αG)-GAN minimizes a non-negative asymmetric f -divergence.

(αD, αG)-GANS: TOY EXAMPLE

Toy example: Pr = N (−3, 0.5), PGθ = N (−1, 0.5)
Saturating Objective
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Tuning αD < 1 and αG =
1 produces more gradient
for the generator while mak-
ing its objective less convex,
which helps stabilize train-
ing; tuning αG > 1 results
in a quasiconvex generator
objective, which can further
improve training stability

ILLUSTRATION OF RESULTS
• 2D-ring dataset: samples drawn from a mixture of 8 equal-prior Gaussian distributions

(modes), indexed i ∈ {1, 2, . . . , 8}with mean (cos(2πi/8), sin(2πi/8)) and variance 10−4
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Figure 1: (Left) Plot of mode coverage over epochs for saturating (αD, αG)-GAN, fixing αG = 1.
(Right) Plot of success and failure rates over 200 seeds for a range of αD values with αG = 1.

• Celeb-A dataset: collection of over 200,000 celebrity headshots, resized to 64× 64

• Compare performance of non-saturating vanilla GAN, non-saturating (αD, αG)-GANs
and Least Squares GAN (LSGAN) [6] with 0-1 binary coding scheme (a = 0, b = c = 1):

D: inf
ω∈Ω

EXr∼Pr
[
1

2
(Dω(Xr)− b)2

]
+ EXg∼PGθ

[
1

2
(Dω(Xg)− a)2

]
G: inf

θ∈Θ
EXg∼PGθ

[
1

2
(Dω(Xg)− c)2

]
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Figure 2: (Left) Plot of FID (smaller is better) averaged over 50 seeds vs. learning rate for a fixed
number of epochs (=100) and different non-saturating (αD, αG = 1)-GANs as well as LSGAN.
(Right) Log-scale plot of FID over training epochs for the non-saturating (1, 1)-GAN (vanilla), the
non-saturating (0.6, 1)-GAN and LSGAN with learning rate 6× 10−4.

Figure 3: Generated Celeb-A faces from the non-saturating (1, 1)-GAN (vanilla), the non-saturating
(0.6, 1)-GAN and LSGAN over 8 seeds when trained for 100 epochs with a learning rate of 5× 10−4.

• LSUN Classroom dataset: contains over 150,000 classroom images, resized to 112× 112
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Figure 4: (Left) Plot of FID (smaller is better) averaged over 50 seeds vs. learning rate for a fixed
number of epochs (=100) and different non-saturating (αD, αG=1)-GANs as well as LSGAN.
(Right) Log-scale plot of FID over training epochs for the non-saturating (1, 1)-GAN (vanilla), the
non-saturating (0.6, 1)-GAN and LSGAN with learning rate 2× 10−4.

Figure 5: Generated LSUN Classroom images from the non-saturating (1, 1)-GAN (vanilla), the non-
saturating (0.6, 1)-GAN and LSGAN over 8 seeds when trained for 100 epochs with a learning rate
of 2× 10−4.

Takeaway: αD < 1, αG ≥ 1 more robust to hyperparameter initialization,
helping to alleviate training instabilities; restricted αD, αG ranges make this
computationally feasible
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