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GENERATIVE ADVERSARIAL NETWORKS (GANS) ILLUSTRATION OF RESULTS

e GANSs [1] are generative models that learn to pro- - * 2D-ring dataset: samples drawn from a mixture of 8 equal-prior Gaussian distributions

duce new samples from an unknown (real) distri- | (modes), indexed i € {1,2,...,8} with mean (cos(27i/8), sin(27:/8)) and variance 104
bution P, _

* Generator Gy and discriminator D,, play an adver-
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* (y mapsnoise Z to synthetic samples X, to mimic
the real samples X,., while D,, tries to differentiate
between the synthetic and real samples
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e Formulated as a zero-sum min-max game: [1(];1{3 sup V (0, w)
o D,
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Figure 1: (Left) Plot of mode coverage over epochs for saturating (ap,ac)-GAN, fixing ag = 1.
(Right) Plot of success and failure rates over 200 seeds for a range of ap values with ag = 1.

VARIOUS VALUE FUNCTIONS & GANS

* Celeb-A dataset: collection of 200,000 celebrity headshots, resized to 64 x 64
e Vanilla GAN (Goodfellow et al. [1]) minimizes Jensen-Shannon divergence (JSD): - ALASEL. COTECHON OF OVEL ceehIIty eadshots, fesized 1o b =

e Compare performance of non-saturating vanilla GAN, non-saturating (ap, ag)-GANs

glf Dw:iui)[o,u Ex,~p, [log Do(Xr)] + Ex, ~pg, [log (1 = Dy (Xy))] and Least Squares GAN (LSGAN) [6] with 0-1 binary coding scheme (¢ = 0,b = ¢ = 1):
h ~~ d _ 1 1
= 2JSD(P.||Pg,) — log4 D: uljrg2 Ex ~p. [5 (D (X;) — b)2] +Ex,~pPg, [5 (D (Xy) — a)2]
e Can reformulate GANs using class probability estimation (CPE) loss ¢(y,9), (y,9) € 1 ,
{0, 1} X [0, 1] [2, 3] as G: elélé EXQNPGQ [5 (Dw(Xg) — C) ]

wf sup [(Vi(6:w) = Ex o [0 Du(X0))] + Exor, [0, Da(X,))

6004 —®— ap=0.6

—— ap=1 —@— LSGAN

e We obtain a-GAN using a-loss (Sypherd et al. [4]) o) o Py : | Bt i
laly.9) = = (1-w™= — -9 -9)), forae (01U (1) o oo
e a-GAN minimizes the Arimoto divergence and recovers vanilla GAN (o — 1), Hellinger "~ 300 551
GAN (a = 1/2), and total variation (TV) GAN (o — o0) 200 - 50
100 - —e 45
TRAINING INSTABILITIES IN GANS I I I

Toy example: P, = N (-3,0.5), Pg, = N (—1,0.5)

Figure 2: (Left) Plot of FID (smaller is better) averaged over 50 seeds vs. learning rate for a fixed

Optimal Discriminator Saturating Objective Non-saturating Objective number of epochs (=100) and different non-saturating (ap,ac = 1)-GANs as well as LSGAN.
B v T~ A~ a=02 | (Right) Log-scale plot of FID over training epochs for the non-saturating (1, 1)-GAN (vanilla), the
a1 * pr(@) ’ f—a=1 | non-saturating (0.6, 1)-GAN and LSGAN with learning rate 6 x 10",

_a:3 | . _a:3

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8

PG ()

ey (SU)

pr(2)° 00 (0,9)=—— @ (1%
Dw* €I )= o ! — y _ y
( ) pr(x)a"l'pGg ($)a a—1 a—1 < )

Vanilla GAN generator’s objective can saturate when discriminator confidently classi-
fies generated data as fake; tuning o < 1 addresses vanishing gradients by reducing con-
fidence of discriminator

Figure 3: Generated Celeb-A faces from the non-saturating (1, 1)-GAN (vanilla), the non-saturating

However, a < 1 can produce exploding gradients for the generator as the generated sam- (0.6,1)-GAN and LSGAN over 8 seeds when trained for 100 epochs with a learning rate of 5 x 10™*.
ples approach real samples, potentially resulting in the generated data being repelled

from the real data ¢ LSUN Classroom dataset: contains over 150,000 classroom images, resized to 112 x 112

[1] proposed a non-saturating alternative generator objective to combat vanishing gradi- 2250 7.75 1
ents: 2000 A 7.50 1 \\‘\‘_H—O—Q-—-‘__.

]EXQNPGG [— log(1 — Dw(Xg)] 1750
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. .. . . : o 7.00 -
— However, this objective can still lead to model oscillation and even mode collapse due to O oo = o T
. s SEPIRT . . . S 6.75 p=0.
failure to converge and sensitivity to hyperparameter initialization (e.g. learning rate) 1000 - -
. 6.50
because of large gradients .
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i . Figure 4: (Left) Plot of FID (smaller is better) averaged over 50 seeds vs. learning rate for a fixed
(aD 2 aG) GANS: DUAL O BJECTIVES number of epochs (=100) and different non-saturating (ap, ag=1)-GANs as well as LSGAN.

e Saturating (ap, ag)-GAN [5] non-zero sum game given by: (Right) Log-scale plot of FID over training epochs for the non-saturating (1, 1)-GAN (vanilla), the
non-saturating (0.6, 1)-GAN and LSGAN with learning rate 2 x 10~ .
[ sup (0, w)} [glf Ve, (0, w)}

Do, :X—[0,1] Seed 1 Seed 2 Seed 3 Seed 4 | ed 5 | Seed 6

Result. For a fixed G,, the D,- of an (ap,aq)-GAN is the same as that of a-
GAN with « = «ap. For this D, and for (ap,ag) € (0,00]* such that
(ap <1, ag >ap/(ap +1)) or (ap >1, ap/2 < ag < ap), the generator of a sat-
urating (ap, ag)-GAN minimizes a non-negative symmetric f-divergence.

e Non-saturating (ap, ag)-GAN given by:

[ sup wapw,w)J [infEXQNPGQwag<1,Dw<Xg>>1]
Do :X—[0,1] Gu

Result. For the same D« and for (ap, ag) € (0, 00]* with ap +ag > agap, the generator

of a non-saturating (ap, ag)-GAN minimizes a non-negative asymmetric f-divergence. Figure 5: Generated LSUN Classroom images from the non-saturating (1, 1)-GAN (vanilla), the non-
saturating (0.6, 1)-GAN and LSGAN over 8 seeds when trained for 100 epochs with a learning rate

of 2 x 1074,

(aD 2 aG)-GANS: 10Y EXAMPLE (Takeaway: ap < 1,ag > 1 more robust to hyperparameter initialization,
Toy example: P, = N'(—3,0.5), Pg, = N (—1,0.5) helping to alleviate training instabilities; restricted ap, ag ranges make this
computationally feasible

Saturating Objective Non-saturating Objective Tuning ap < 1 and ag =

(0.0 - Lo 1 produces more gradient
osf . —(ap,ag) = (0.2,1 .
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