

TUNABLE DUAL-OBJECTIVE GANSFOR STABLE TRAINING

MONICA WELFERT, KYLE OTSTOT, GOWTHAM R. KURRI, AND LALITHA SANKAR

GENERATIVE ADVERSARIAL NETWORKS (GANS)

- GANs [1] are generative models that learn to produce new samples from an unknown (real) distribution P_r
- Generator G_{θ} and discriminator D_{ω} play an adversarial game
- G_{θ} maps noise Z to synthetic samples X_q to mimic the real samples X_r , while D_{ω} tries to differentiate between the synthetic and real samples
- Formulated as a zero-sum min-max game:

VARIOUS VALUE FUNCTIONS & GANS

• Vanilla GAN (Goodfellow et al. [1]) minimizes Jensen-Shannon divergence (JSD): $\inf_{G_{\theta}} \sup_{D_{\omega}: \mathcal{X} \to [0,1]} \mathbb{E}_{X_r \sim P_r} [\log D_{\omega}(X_r)] + \mathbb{E}_{X_g \sim P_{G_{\theta}}} [\log (1 - D_{\omega}(X_g))]$

 $= 2JSD(P_r || P_{G_{\theta}}) - \log 4$

 $\left(\inf_{G_{\theta}}\sup_{D_{\omega}}V(\theta,\omega)\right)$

• Can reformulate GANs using class probability estimation (CPE) loss $\ell(y, \hat{y})$, $(y, \hat{y}) \in$ $\{0,1\} \times [0,1]$ [2, 3] as

 $\left[\left(V_{\ell}(\theta, \omega) \coloneqq \mathbb{E}_{X_r \sim P_r} \left[-\ell(1, D_{\omega}(X_r)) \right] + \mathbb{E}_{X_g \sim P_{G_{\theta}}} \left[-\ell(0, D_{\omega}(X_g)) \right] \right) \right]$ sup inf $G_{\theta} D_{\omega} : \mathcal{X} \to [0,1]$

• We obtain α -GAN using α -loss (Sypherd et al. [4])

ILLUSTRATION OF RESULTS

• **2D-ring dataset**: samples drawn from a mixture of 8 equal-prior Gaussian distributions (modes), indexed $i \in \{1, 2, \dots, 8\}$ with mean $(\cos(2\pi i/8), \sin(2\pi i/8))$ and variance 10^{-4}

Figure 1: (Left) Plot of mode coverage over epochs for saturating (α_D, α_G) -GAN, fixing $\alpha_G = 1$. (Right) Plot of success and failure rates over 200 seeds for a range of α_D values with $\alpha_G = 1$.

- Celeb-A dataset: collection of over 200,000 celebrity headshots, resized to 64×64
- Compare performance of non-saturating vanilla GAN, non-saturating (α_D, α_G)-GANs and Least Squares GAN (LSGAN) [6] with 0-1 binary coding scheme (a = 0, b = c = 1):

D:
$$\inf_{\omega \in \Omega} \mathbb{E}_{X_r \sim P_r} \left[\frac{1}{2} \left(D_\omega(X_r) - b \right)^2 \right] + \mathbb{E}_{X_g \sim P_{G_\theta}} \left[\frac{1}{2} \left(D_\omega(X_g) - a \right)^2 \right]$$

G: $\inf_{\theta \in \Theta} \mathbb{E}_{X_g \sim P_{G_\theta}} \left[\frac{1}{2} \left(D_\omega(X_g) - c \right)^2 \right]$

 $\frac{1}{\alpha - 1} \left(1 - yy \quad \alpha \quad -(1 - y)(1 - y) \quad \alpha \quad \right), \quad \text{for } \alpha \in (0, 1) \cup (1, \infty)$ • α -GAN minimizes the Arimoto divergence and recovers vanilla GAN ($\alpha \rightarrow 1$), Hellinger GAN ($\alpha = 1/2$), and total variation (TV) GAN ($\alpha \rightarrow \infty$)

TRAINING INSTABILITIES IN GANS

Toy example: $P_r = \mathcal{N}(-3, 0.5), P_{G_{\theta}} = \mathcal{N}(-1, 0.5)$

- Vanilla GAN generator's objective can saturate when discriminator confidently classifies generated data as fake; tuning $\alpha < 1$ addresses *vanishing gradients* by reducing confidence of discriminator
- However, $\alpha \leq 1$ can produce *exploding gradients* for the generator as the generated samples approach real samples, potentially resulting in the generated data being repelled from the real data
- [1] proposed a non-saturating alternative generator objective to combat vanishing gradients:

$$\mathbb{E}_{X_g \sim P_{G_\theta}} \left[-\log(1 - D_\omega(X_g)) \right]$$

- However, this objective can still lead to *model oscillation* and even *mode collapse* due to failure to converge and sensitivity to hyperparameter initialization (e.g. learning rate) because of large gradients
- Can address all of these types of instabilities via different α values for discriminator and generator losses

(α_D, α_G) -GANS: DUAL OBJECTIVES

Figure 2: (Left) Plot of FID (smaller is better) averaged over 50 seeds vs. learning rate for a fixed number of epochs (=100) and different non-saturating ($\alpha_D, \alpha_G = 1$)-GANs as well as LSGAN. (Right) Log-scale plot of FID over training epochs for the non-saturating (1, 1)-GAN (vanilla), the non-saturating (0.6, 1)-GAN and LSGAN with learning rate 6×10^{-4} .

Figure 3: Generated Celeb-A faces from the non-saturating (1, 1)-GAN (vanilla), the non-saturating (0.6, 1)-GAN and LSGAN over 8 seeds when trained for 100 epochs with a learning rate of 5×10^{-4} .

• LSUN Classroom dataset: contains over 150,000 classroom images, resized to 112 × 112

Figure 4: (Left) Plot of FID (smaller is better) averaged over 50 seeds vs. learning rate for a fixed

• Saturating (α_D, α_G) -GAN [5] non-zero sum game given by:

Result. For a fixed G_{ω} , the D_{ω^*} of an (α_D, α_G) -GAN is the same as that of α -GAN with $\alpha = \alpha_D$. For this D_{ω^*} and for $(\alpha_D, \alpha_G) \in (0, \infty]^2$ such that $(\alpha_D \leq 1, \ \alpha_G > \alpha_D/(\alpha_D + 1))$ or $(\alpha_D > 1, \ \alpha_D/2 < \alpha_G \leq \alpha_D)$, the generator of a saturating (α_D, α_G) -GAN minimizes a non-negative symmetric f-divergence.

• Non-saturating (α_D, α_G) -GAN given by:

$$\sup_{D_{\omega}:\mathcal{X}\to[0,1]} V_{\ell_{\alpha_D}}(\theta,\omega) \qquad \inf_{G_{\omega}} \mathbb{E}_{X_g \sim P_{G_{\theta}}} [\ell_{\alpha_G}(1, D_{\omega}(X_g))]$$

Result. For the same D_{ω^*} and for $(\alpha_D, \alpha_G) \in (0, \infty]^2$ with $\alpha_D + \alpha_G > \alpha_G \alpha_D$, the generator of a non-saturating (α_D, α_G) -GAN minimizes a non-negative asymmetric f-divergence.

(α_D, α_G) -GANS: TOY EXAMPLE

Saturating Objective $p_r(z)$ $-\ell_{lpha_G}(0,D_{\omega^*}(x))$ $\ell_{lpha_G}(1,D_{\omega^*}($ $-(\alpha_D, \alpha_G) = (1, 1)$ $-(\alpha_D, \alpha_G) = (0.2, 1)$ $-(\alpha_D, \alpha_G) = (0.2, 2)$

Non-saturating Objective Tuning $\alpha_D < 1$ and $\alpha_G =$ 1 produces more gradient for the generator while making its objective less convex, which helps stabilize training; tuning $\alpha_G > 1$ results in a quasiconvex generator objective, which can further improve training stability

number of epochs (=100) and different non-saturating (α_D, α_G =1)-GANs as well as LSGAN. (Right) Log-scale plot of FID over training epochs for the non-saturating (1, 1)-GAN (vanilla), the non-saturating (0.6, 1)-GAN and LSGAN with learning rate 2×10^{-4} .

Figure 5: Generated LSUN Classroom images from the non-saturating (1, 1)-GAN (vanilla), the nonsaturating (0.6, 1)-GAN and LSGAN over 8 seeds when trained for 100 epochs with a learning rate of 2×10^{-4} .

Takeaway: $\alpha_D < 1, \alpha_G \geq 1$ more robust to hyperparameter initialization, helping to alleviate training instabilities; restricted α_D, α_G ranges make this computationally feasible

ACKNOWLEDGMENTS & REFERENCES

Work supported by NSF grants CIF-1901243, CIF-1815361, CIF-2007688, CIF-2134256, SaTC-2031799, SCH-2205080

- [1] Goodfellow et al. Generative adversarial nets. In NeurIPS, 2014.
- [2] Kurri et al. Realizing GANs via a tunable loss function. In ITW, 2021.
- [3] Kurri et al. α -GAN: Convergence and estimation guarantees. In *ISIT*, 2022.
- [4] Sypherd et al. A tunable loss function for robust classification: Calibration, landscape, and generalization. *IEEE Trans. on Inf. Theory*, 2022.
- [5] Welfert et al. (α_D, α_G) -GANs: Addressing GAN training instabilities via dual objectives. In *ISIT*, 2023.
- [6] Mao et al. Least squares generative adversarial networks. In *ICCV*, 2017.