Accident-Analyzer: Understanding Vehicle Accident
Patterns in the United States

Kyle Otstot Shreyash Gade Jaswanth Reddy Tokala
Arizona State University Arizona State University Arizona State University
Tempe, US Tempe, US Tempe, US
kotstot@asu.edu sgade13@asu.edu jtokala@asu.edu

Anudeep Reddy Dasari Hruthik Reddy Sunnapu Nitesh Valluru
Arizona State University Arizona State University Arizona State University
Tempe, US Tempe, US Tempe, US

adasari4@asu.edu

AccidentAnalyzer: Understanding Car Accident Patterns in the United States ©

sreddy29@asu.edu

nvalluru@asu.edu

Graph Annotations B

2017 2018 2019 220 2021

—1st

~2nd
3d

an

- 5th

2016 2017

2019 2020 2021

Figure 1. An overview of Accident-Analyzer

1 Introduction

In this project, we re-imagine CrimAnalyzer [1]- a visual-
ization assisted analytic tool for crimes in Sdo Paulo- in the
context of traffic accidents, ultimately producing Accident-
Analyzer. In doing so, we explore the spatio-temporal pat-
terns of traffic accidents across the United States from 2016
to 2021. The Accident-Analyzer system allows for users to
identify local hotspots, visualize accident trends over time,
and filter the data by key weather categories in real-time.
Our goals in this project were to best recreate the analytic
tool proposed in the CrimAnalyzer paper, as well as extend

its capabilities to the US Accidents dataset, a collection of
approximately 2.8 million car accidents covering 49 states in
the US. The visualization was primarily created with the D3.js
(v7) and Leaflet.js JavaScript libraries, the dataset preprocess-
ing was done using Python, and the data is stored/accessed
via a MySQL database. Lastly, the hotspot computation is
performed by a client-side Python library called Pyodide us-
ing Scikit Learn’s non-negative matrix factorization (NMF)
implementation. In this report, we look to outline the visual
encodings and interactions of each section, as well as provide
two case studies showcasing the usefulness of this tool.

2 Visualization Design

In this section, we detail the overall system design and in-
teractions across eight panels (a.k.a., “views"). Each view is
defined by its visual encoding, user interactivity, and filtering
capabilities. We also note the added extensions.

2.1 Control Menu:

The first view spans the first row of the system, including the
title of the project on the left and graph annotation checkbox
on the right. The title also contains a link to the original
CrimAnalyzer paper. When the graph annotation checkbox
is selected, a tooltip appears below the cursor; as the cursor
moves, the tooltip updates its content with a description of
the view hovered over by the cursor. This allows the viewer
to better understand the axis labels and legends, although
we believe our design is intuitive enough for viewers to
understand the general accident trends without the aid of
the tooltip.

US Accident Counts
Hover over a region

UtEawa

... = Leaflet | © OpenStreetMap

Figure 2. The initial map view

2.2 Map View:

For this view, we overlay a simple geographical map with a
choropleth map that color-codes the number of accidents re-
ported at each site in the region. In order to implement these,
we used Leaflet.js, an open source JavaScript library designed
to help developers incorporate interactive geographical maps
into their web applications. As a result, we have successfully
implemented the following interactions for the map view:

o Region selection: Users can define a region of inter-
est by clicking or zooming onto a particular state in
the map; consequently, every panel is appropriately
filtered by the selected state, and this view is updated
to show the county level view of the state.

e Draw selection: Users can leverage the panel’s rec-
tangle select resource by dragging to select a rectan-
gular region highlighting all the states or counties
present in the region; consequently, the selected states

or counties are highlighted in the map, and every other
panel is updated appropriately based on this filter.

e Tooltip: When the cursor hovers over a particular
state or county, we not only embolden the region but
also display a tooltip in the top-right corner showing
the region name and accident count.

e Filtering: When the region of interest is modified,
ever other panel is adjusted accordingly in real time.
Likewise, when the data is filtered by other panels, the
coloring of the choropleth map is updated to reflect
these changes. See Figures 2 and 3 for examples.

County view of Arizona X

Figure 3. Region selection and county level view

2.3 Hotspot View

This view contains a collection of three hotspots, includ-
ing the spatial distributions (colored map) and importance
metrics (gauge) of each hotspot. The spatial distributions
are color-coded to give weight (darkness) to regions with
greater activity relative to the entire hotspot. Furthermore,
each hotspot contains a gauge widget showing the temporal
rate of occurrence of the hotspot (bottom percentage), and
measure of relevance of the hotspot with respect to the whole
set of accidents (gauge needle pointer). This measure of rel-
evance is a bilinear interpolation of the hotspot’s temporal
rate of occurrence and accident count rate relative to the
other hotspots. Furthermore, our hotspot view contains a
line plot showcasing the temporal activity of each hotspot
over time. The original paper did not include this, so we
consider this implementation a natural extension of their
work. Lastly, our hotspot distributions, gauges, and line plots
update in real time, which is another improvement over the
original paper; for their implementation, one must manually
press the play button in the control menu.

We have captured these hotspots using non-negative ma-
trix factorization (NMF) method. We have implemented NMF
in Python using the Scikit Learn library. For web implemen-
tation purposes, we used Pyodide (a Python distribution for
the browser and Node.js) to compile Python code on the
client side with JavaScript. Specifically, this implementation
breaks the region-time matrix into matrix factors W and H,
which are discussed in a later section.

https://pyodide.org/en/stable/

0y T T T T T
2016 2017 2018 2019 2020 2021

Figure 4. Hotspot view

2.4 Global Temporal View

This time-series area chart provides an overview of the num-
ber of accidents reported over the whole time period. The
user can constrain the data in a particular (continuous) time
interval by brushing a rectangle. When doing so, the other
panels are updated to reflect the new filtered data. When a
brush selection is made, the horizontal and vertical axes are
properly adjusted, and a “Reset” button is provided for the
user to return to the initial view, as shown in Figure .

T T T T T
2016 2017 2018 2019 2020 2021

4]
224 | Reset

T T T T T T Y f T T T T T T ™
2020 February March Apl May June July August SeptemberGctober NovembeDecember 2021 February March

Figure 5. Global temporal view: initial view from 2016 to
2021 (top) and time interval selected by the user with the
rectangular brush (bottom).

2.5 Cumulative Temporal View

This view is a collection of three bar charts displaying the
number of accidents by month, day of week, and time of
day (i.e., morning, afternoon, evening, and night) respec-
tively. This allows the user to potentially identify accident
patterns in cyclical, non-continuous time intervals. When
other panels are used to filter the data, the bars are animated
and adjusted to reflect the new conditions. Likewise, if the
user wants to select any bar (or group of bars) to filter the
data, the opacity of the bars are also adjusted to visualize

the new constraints. This action is shown in Figure 6 below,
specifically with the month August and day Tuesday being
the subjects of filtering.

9 009
180 i:g i 350
160 150 4 300 4
140 4 140 4 250 o
120 4 120 4
100 100 J
804 30 4 150
60 60 1 100 A
40 40 4
20 4 20 J 50
0 T T T T T T T T T T T T1 0 T T T T T T T1 0 T T
WP e B R P WPt Sty o Sefed®

200

Figure 6. Cumulative temporal view

2.6 Ranking Type View

This view shows a collection of polylines that encode the
relationship between 5 weather conditions— cloudy, rain,
snow, thunder, visibility— and time. Each weather condition
has its own polyline, with the horizontal position indicating
time and vertical position indicating ranking of severity,
which is defined by the length of road closure incited by the
accident. When the user activates a filter from other panels,
this panel is recomputed to reflect the filtered data. There
are no filtering interactions for this view, but the user can
hover over a weather condition to highlight the polyline and
better understand the weather-severity relationship.

T T T T T
2016 2017 2018 2019 2020 2021

Figure 7. Ranking type view

2.7 Radial Type View

For this view, we include a collection of bar charts with a
radial layout. In doing so, each radial chart belongs to a dif-
ferent weather condition, and the number on top shows the
percentage of each weather condition in the filtered dataset.
The radial bars in each chart are organized by month and
year. Furthermore, the inside of each radial chart possesses
a spatial distribution of the selected region (via map view)
according to the accident counts grouped by weather condi-
tion. Each radial chart and spatial distribution is color-coded
by weather condition, and although there are no filtering
options for the user, the view will still reflect changes made
by other filters in real time.

2.8 Filter Widget

This view contains two horizontal histograms over time—
one for year (2016-2021), and one for the five weather con-
ditions outlined above. The purpose of these widgets is to

provide the user more ability to make quick filters based
on the year and weather condition attributes. The visualiza-
tion closely resembles the cumulative temporal view, and
the functionality is likewise identical. Figure 8 shows two
examples of selections made in these widgets.

2021
2019
2018
2017

2016

T T T
D
) q}*;ﬁ &P PP

I Cloudy
I Rain

I Snow

- Thunder

I Visibility

I 1 1 1 I I T T | T Ll
L R R P P AP R Ny S
O PSP PP P P FE

Figure 8. Filter Widget

2.9 Extensions

In this section, we briefly highlight some of the important
extensions given by our visualization in comparison to the
original paper’s implementation.

2.9.1 Graph Annotations. As mentioned earlier, we im-
plemented a checkbox feature which when selected will add
a hovering tooltip to the interface. Whenever the user hovers
over a panel, they are able to see the name of the view and a
brief description of the visualization along with it.

Graph Annotations

/
N

/----_./_/'/

T T L 1
2019 2020 2021

Figure 9. Graph Annotations

2.9.2 Temporal Hotspot view. Also specified earlier, this
view breaks down the temporal distribution of the hotspots,
where each line represents a hostpots. Moreover, when the
user hovers over a particular hotspot, the corresponding line
is highlighted. Everything in the hotspot view is computed
in real time, which is also an extension of the original paper.

3 Dataset Description

In the paper we investigate, CrimAnalyzer queries spatial
and temporal data from the Sdo Paulo crime database; how-
ever, this database appears to not be publicly available, so
instead we decided to use a US Accidents dataset from Kag-
gle. This dataset is of the type Table, containing 47 different
attributes (columns) and approximately 2.8 million items
(rows). We have not used all 47 attributes for Accident-
Analyzer, since many of them are redundant or not very
useful. Instead, we focused on the 7 attributes outlined be-
low in the following table. These attributes were used to
further preprocess the data for queries done by the visual-
ization system, as described in the next subsection.

Attribute Description Type Cardinality
Start time of the accident in Time space in
Start_Time local time zone Quantitative 2016-22
End time of the accident in Time space in
End_Time local time zone Quantitative 2016-22
Length of the road extent Positive
Distance affected by the accident Quantitative number
City City in address field Categorical 11.7k
County County in address field Categorical 1707
State State in address field Categorical 49
Weather condition (rain,
Weather_Conditi snow, thunderstorm, fog,
on etc.) Categorical 127
Period of day (i.e. day or
night) based on
Sunrise_Sunset sunrise/sunset Categorical 2

Figure 10. Dataset description

3.1 Dataset Preprocessing

First, the original dataset had over 100 weather categories
and we coalesced and narrowed them down to the afore-
mentioned 5 categories. Then, we calculated the duration of
the accident using the start time and end time attributes of
the accident. Furthermore, in order to easily query the data
by non-continuous categories, we split the time stamp into
various fields such as year, month, day of the week, and time
of the day. Lastly, we moved the data from a CSV file to a
MySQL database and hosted it locally, as specifically outlined
in the GitHub Repository’s README markdown. The data is
queried by PHP in JSON format, and each panel receives this
filtered version of the data, with the visualizations having
been updated according to the new data.

4 Case Studies

In this section, we bring light to a couple notable examples
of how the visualization-assisted analytic tool can serve ef-
fective use to incoming viewers.

r T T T T T
2016 2017 2018 2019 2020 2021

DL

4 19%)

Figure 11. Visualization for the first case study

Lo 25%

4.1 Vehicle Accidents before/after COVID-19

Here, we describe an example of noticing the difference in
accident trends between some US states in terms of pre- and
post-COVID lockdown. First, we use the filter widget view
to select the years 2020 and 2021, which includes the time
directly before and after the initial outbreak of COVID-19
in the United States. Then, we observe the hotspot view and
notice that one hotspot is primarily defined by California
(gold), and another hotspot is primarily defined by Florida
(maroon). In the hotspot line graph, we can see that the yel-
low line is the highest at the beginning of 2020, but then
begins to descend and ultimately falls into last place as 2020
progresses into 2021. On the other hand, the maroon line
begins 2020 in last place, but increases as the year goes on
and ultimately surpasses the other lines. This pattern can
be indicative of how the state governments handled the out-
break of COVID-19. For example, the democratic California
governor (Gavin Newsom) tended to encourage a lockdown
and play it safer with the threat of COVID, which possibly
caused less traffic and therefore less accidents. Conversely,
the republican Florida Governor (Ron DeSantis) took an op-
posite stance and encouraged normal life as much as possible
during the pandemic; this, in turn, likely caused relatively
more traffic and therefore more accidents. Overall, this case
study shows how hotspot identifications and temporal pat-
terns can even unlock differences in ways that regions are
politically governed.

4.2 Accident Severity during Winter in New York

In this case study, we show how weather conditions can
yield different results in accident severity during different
times of the year. First, we use the map view to select New

Figure 12. Visualization for the second case study

York and the cumulative temporal view to select November,
December, and January (a.k.a. winter season). Then we ob-
serve the ranking type view and see that out of the 5 weather
conditions, the snow condition appears to consistently cause
accidents that are relatively more severe; that is, snow causes
longer road segments to be blocked off after an accident oc-
curs. Intuitively this makes a lot of sense because snowy
weather makes it difficult for authorities to resolve damages
and blockages caused by two or more colliding vehicles. As
a result, this difficulty may lead the state authorities to close
a larger portion of the affected road segment.

5 Discussion

Lastly, in this section we cover some of the lessons that
we learned in this project, as well as some potential future
improvements.

5.1 Lessons learned

o In this project, we learned how to set up a server using
PHP and connect it to MySQL database and JavaScript
to query data required for the visualization.

e Additionally, we learned how to use Leaflet.js library
alongside D3.js to implement interactive maps and
add filters to the selected regions.

e We also learned how to integrate Python on the client
side in JavaScript with the help of Pyodide.

o Lastly, we learned how the non-negative matrix fac-
torization can be used to generate hotspots and un-
derstood how to implement the algorithm with the
help of the Sci-kit Learn library.

5.2 Improvements and Future work

o Algorithm: Because the non-negative matrix factor-
ization technique is dependent on the initial condi-
tions of the optimization procedure, our method for
identifying hotspots is not stable. To avoid this effect,
some implementations, such as to run the method
multiple times while maintaining the result with the
minimum mistake, may improve the results. Although
the results become more reliable after allowing the
multiple run option, a more robust method may be
pursued to prevent potential effects.

e Additional data: Additional data that can be used
to enhance the understanding of the accidents. For
example, factors such as accident type, vehicle type,
and the existence of specific sorts of places like bars

or pubs, among other information, may have a rela-
tionship with certain types of incidents and might be
utilized to acquire a better understanding of data. We
may also include a panel that examines how certain
incidents influenced subsequent accidents in the same
location.

e Global data:Another enhancement would be to in-
clude worldwide data and develop the system for the
entire world in order to compare accident patterns
across various countries and analyze how different
approaches and regulations effect accidents.

6 Additional NMF Details

We use the non-negative matrix factorization (NMF) method
to help uncover spatio-temporal encodings of potentially-
relevant hotspots in the data. Suppose X is a m X n matrix

with each row corresponding to a region and each column
corresponding to a time slice. The goal of NMF is to de-
compose X as a product WH where W, H are non-negative
matrices with dimensions m X k and k X n, respectively. In
doing so, column i € [k] in W and row i € [k] in H corre-
spond to the same hotspot i (out of k total hotspots). The
rows of W indicate how much each region contributes to
each hotspot, while the columns of H indicate the frequency
of each hotspot over time. This allows for more intuitive
groupings of regions containing similar accident patterns
over time.

References
[1] Garcia, Germain and Silveira, Jaqueline and Poco, Jorge and Paiva,
Afonso and Nery, Marcelo Batista and Silva, Claudio T. and Adorno,
Sérgio and Nonato, Luis Gustavo, CrimAnalyzer: Understanding
Crime Patterns in Sao Paulo. IEEE Transactions on Visualization and
Computer Graphics, 2021

	1 Introduction
	2 Visualization Design
	2.1 Control Menu:
	2.2 Map View:
	2.3 Hotspot View
	2.4 Global Temporal View
	2.5 Cumulative Temporal View
	2.6 Ranking Type View
	2.7 Radial Type View
	2.8 Filter Widget
	2.9 Extensions

	3 Dataset Description
	3.1 Dataset Preprocessing

	4 Case Studies
	4.1 Vehicle Accidents before/after COVID-19
	4.2 Accident Severity during Winter in New York

	5 Discussion
	5.1 Lessons learned
	5.2 Improvements and Future work

	6 Additional NMF Details
	References

